Global higher integrability for minimisers of convex obstacle problems with (p,q)-growth

被引:10
作者
Koch, Lukas [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
基金
英国工程与自然科学研究理事会;
关键词
ELLIPTIC-EQUATIONS; PENALTY METHOD; REGULARITY; FUNCTIONALS; GROWTH; INTEGRALS; CALCULUS; RELAXATION; BESOV;
D O I
10.1007/s00526-022-02202-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global W-1,W-q(Omega,R-N)-regularity for minimisers of F(u)=integral F-Omega(x,Du) dx satisfying u >= psi for a given Sobolev obstacle psi W-1,W-q (Omega, R-N) regularity is also proven for minimisers of the associated relaxed functional. Our main assumptions on F(x, z) are a uniform alpha-Holder continuity assumption in x and natural ( p, q)-growth conditions in z with q < (n+alpha)p/n. In the autonomous case F = F(z) we can yimprove the gap to q < min (np/n-1, p + 1), a result new even in the unconstrained case.
引用
收藏
页数:28
相关论文
共 70 条
[1]   Relaxation of convex functional:: The gap problem [J].
Acerbi, E ;
Bouchitté, G ;
Fonseca, I .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :359-390
[2]   Optimal regularity for the obstacle problem for the p-Laplacian [J].
Andersson, John ;
Lindgren, Erik ;
Shahgholian, Henrik .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) :2167-2179
[3]  
[Anonymous], 2003, Direct Methods in the Calculus of Variations, DOI DOI 10.1142/5002
[4]  
[Anonymous], 2006, Appl. Math., DOI DOI 10.1007/S10778-006-0110-3
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   ON THE REGULARITY OF MINIMIZERS FOR SCALAR INTEGRAL FUNCTIONALS WITH (p, q)-GROWTH [J].
Bella, Peter ;
Schaeffner, Mathias .
ANALYSIS & PDE, 2020, 13 (07) :2241-2257
[7]   Regularity for obstacle problems without structure conditions [J].
Bertazzoni, Giacomo ;
Ricco, Samuele .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62
[8]   Higher integrability in parabolic obstacle problems [J].
Boegelein, Verena ;
Scheven, Christoph .
FORUM MATHEMATICUM, 2012, 24 (05) :931-972
[9]   SMOOTHNESS OF SOLUTIONS TO NONLINEAR VARIATIONAL INEQUALITIES [J].
BREZIS, H ;
KINDERLE.D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (09) :831-844
[10]  
Buttazo G., 1995, Math. Appl., V331, P1