Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator

被引:0
作者
Li, Anran [1 ]
Fan, Dandan [1 ]
Wei, Chongqing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 01期
基金
中国国家自然科学基金;
关键词
Critical Kirchhoff-type equations; Variational methods; Concentration compactness lemma; Clark's theorem; CONCENTRATION-COMPACTNESS PRINCIPLE; NONTRIVIAL SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s00033-021-01674-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the following Kirchhoff-type equation - M(integral(RN)vertical bar del u vertical bar(p)dx)Delta(p)u = vertical bar u vertical bar(p*- 2)u + h(x)vertical bar u vertical bar(q-2)u, x is an element of R-N, where N >= 3, 1 < p < N, p(*) = N-p/N-p, 0 < h is an element of L p(*)/p(*)- q(R-N) with q is an element of (1, p(*)); M is a nonnegative continuous function with some growth conditions. We show that the above problem has infinitely many solutions by using variational methods.
引用
收藏
页数:13
相关论文
共 19 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]   CONCENTRATION COMPACTNESS PRINCIPLE AT INFINITY AND SEMILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL AND SUBCRITICAL SOBOLEV EXPONENTS [J].
CHABROWSKI, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (04) :493-512
[4]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[5]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[6]   On a critical Kirchhoff-type problem [J].
Faraci, Francesca ;
Farkas, Csaba .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
[7]   Multiplicity of solutions for critical Kirchhoff type equations [J].
Hebey, Emmanuel .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (06) :913-924
[9]  
Kirchhoff G., 1883, VORLESUNGEN MATH PHY
[10]  
Li AR, 2015, Z ANGEW MATH PHYS, V66, P3147, DOI 10.1007/s00033-015-0551-9