Stress obtained by interpolation methods for a boundary value problem in linear viscoelasticity

被引:2
作者
Desch, W
Fasanga, E
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissenschaft Rechnen, A-8010 Graz, Austria
[2] Charles Univ, Dept Math Anal, Prague 18675, Czech Republic
关键词
D O I
10.1016/j.jde.2005.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will solve the following boundary value problem in linear viscoelasticity: given the value of the stress on (a part of) the boundary of the domain find the stress in the whole body at all positive times. Using a state space setting we show that the stress field inside the body can be obtained from the boundary stress by a variation-of-parameters formula involving an analytic semigroup. The relation between the regularities of the boundary stress and the stress inside the body is therefore characterized by the well-known and rich regularity theory for analytic semigroups. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 304
页数:23
相关论文
共 12 条
[1]  
BONACCORSI S, VOLTERRA EQUATIONS P
[2]  
Cl├a┬ment P., 2002, J INTEGRAL EQUAT, V14, P239, DOI DOI 10.1216/JIEA/1181074916
[3]   SINGULAR RELAXATION MODULI AND SMOOTHING IN 3-DIMENSIONAL VISCOELASTICITY [J].
DESCH, W ;
GRIMMER, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :381-404
[4]  
DESCH W, 1988, J INTEGRAL EQUAT, V1, P397
[5]  
DESCH W, 2003, REND ISTIT MAT U TRI, V35, P69
[6]  
HOMAN K, 2003, THESIS DELFT U PRESS
[7]  
Lunardi A, 1995, ANAL SEMIGROUPS OPTI
[8]  
Peetre J., 1976, New thoughts on Besov spaces, V1
[9]  
Pruss J., 1993, EVOLUTIONARY INTEGRA, V87, DOI 10.1007/978-3-0348-8570-6
[10]  
SAPRATO G, 1992, ENCY MATH, V45