Efficient quantum arithmetic operation circuits for quantum image processing

被引:87
作者
Li, Hai-Sheng [1 ]
Fan, Ping [2 ]
Xia, Haiying [1 ]
Peng, Huiling [1 ]
Long, Gui Lu [3 ,4 ,5 ]
机构
[1] Guangxi Normal Univ, Coll Elect Engn, Guilin 541004, Peoples R China
[2] East China JiaoTong Univ, Coll Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[5] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2020年 / 63卷 / 08期
基金
中国国家自然科学基金;
关键词
quantum arithmetic operation; quantum fault tolerant circuit; quantum computation; quantum image processing; REPRESENTATION; COMPRESSION; ALGORITHM; DESIGN; GATES;
D O I
10.1007/s11433-020-1582-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Polynomial-Time T-Depth Optimization of Clifford plus T Circuits Via Matroid Partitioning [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (10) :1476-1489
[2]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]  
Beach G, 2004, 32ND APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, P39
[5]   THE COMPUTER AS A PHYSICAL SYSTEM - A MICROSCOPIC QUANTUM-MECHANICAL HAMILTONIAN MODEL OF COMPUTERS AS REPRESENTED BY TURING-MACHINES [J].
BENIOFF, P .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (05) :563-591
[6]   Three-step three-party quantum secure direct communication [J].
Chen, Shan-Shan ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
[7]  
Cuccaro S. A., ARXIVQUANTPH0410184
[8]   Measurement-device-independent quantum key distribution with hyper-encoding [J].
Cui, Zheng-Xia ;
Zhong, Wei ;
Zhou, Lan ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (11)
[9]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[10]  
Draper T. G., ARXIVQUANTPH0406142