On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions

被引:20
作者
Barles, G
Da Lio, F
机构
[1] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2005年 / 22卷 / 05期
关键词
D O I
10.1016/j.anihpc.2004.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear Neumann type boundary value problems related to ergodic phenomenas. The particularity of these problems is that the ergodic constant appears in the (possibly nonlinear) Neumann boundary conditions. We provide, for bounded domains, several results on the existence, uniqueness and properties of this ergodic constant. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:521 / 541
页数:21
相关论文
共 34 条
[1]   Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result [J].
Alvarez, O ;
Bardi, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (01) :17-61
[2]   Viscosity solutions methods for singular perturbations in deterministic and stochastic control [J].
Alvarez, O ;
Bardi, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (04) :1159-1188
[3]   Ergodic problem for the Hamilton-Jacobi-Bellman equation .1. Existence of the ergodic attractor [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (04) :415-438
[4]   Ergodic problem for the Hamilton-Jacobi-Bellman equation. II [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01) :1-24
[5]   Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (02) :293-332
[6]   On ergodic stochastic control [J].
Arisawa, M ;
Lions, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (11-12) :2187-2217
[7]  
Bagagiolo F, 1997, LECT NOTES PURE APPL, V188, P29
[8]   On the strong maximum principle for fully nonlinear degenerate elliptic equations [J].
Bardi, M ;
Da Lio, F .
ARCHIV DER MATHEMATIK, 1999, 73 (04) :276-285
[9]  
BARLES G, 1995, CR ACAD SCI I-MATH, V320, P69
[10]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939