Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array

被引:24
作者
Abbott, Jeffrey [1 ,2 ,3 ]
Mukherjee, Avik [4 ]
Wu, Wenxuan [1 ]
Ye, Tianyang [1 ,2 ]
Jung, Han Sae [1 ]
Cheung, Kevin M. [2 ]
Gertner, Rona S. [2 ]
Basan, Markus [4 ]
Ham, Donhee [1 ]
Park, Hongkun [2 ,3 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
关键词
NANOELECTRODE ARRAY; REDOX STATE; REAL-TIME; IN-VITRO; BARRIER; EXPRESSION; ASSAY;
D O I
10.1039/d1lc00878a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Electrode-based impedance and electrochemical measurements can provide cell-biology information that is difficult to obtain using optical-microscopy techniques. Such electrical methods are non-invasive, label-free, and continuous, eliminating the need for fluorescence reporters and overcoming optical imaging's throughput/temporal resolution limitations. Nonetheless, electrode-based techniques have not been heavily employed because devices typically contain few electrodes per well, resulting in noisy aggregate readouts. Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) have sometimes been used for electrophysiological measurements with thousands of electrodes per well at sub-cellular pitches, but only basic impedance mappings of cell attachment have been performed outside of electrophysiology. Here, we report on new field-based impedance mapping and electrochemical mapping/patterning techniques to expand CMOS-MEA cell-biology applications. The methods enable accurate measurement of cell attachment, growth/wound healing, cell-cell adhesion, metabolic state, and redox properties with single-cell spatial resolution (20 mu m electrode pitch). These measurements allow the quantification of adhesion and metabolic differences of cells expressing oncogenes versus wild-type controls. The multi-parametric, cell-population statistics captured by the chip-scale integrated device opens up new avenues for fully electronic high-throughput live-cell assays for phenotypic screening and drug discovery applications.
引用
收藏
页码:1286 / 1296
页数:12
相关论文
共 55 条
[1]  
Abbott J., 2019, NAT BIOMED ENG, P1
[2]  
Abbott J, 2020, IEEE J SOLID-ST CIRC, V55, P2567, DOI [10.1109/JSSC.2020.3005816, 10.1109/jssc.2020.3005816]
[3]   Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array [J].
Abbott, Jeffrey ;
Ye, Tianyang ;
Krenek, Keith ;
Gertner, Rona S. ;
Wu, Wenxuan ;
Jung, Han Sae ;
Ham, Donhee ;
Park, Hongkun .
LAB ON A CHIP, 2020, 20 (17) :3239-3248
[4]  
Abbott J, 2017, NAT NANOTECHNOL, V12, P460, DOI [10.1038/nnano.2017.3, 10.1038/NNANO.2017.3]
[5]   Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease [J].
Acloque, Herve ;
Adams, Meghan S. ;
Fishwick, Katherine ;
Bronner-Fraser, Marianne ;
Angela Nieto, M. .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (06) :1438-1449
[6]   Redox outside the Box: Linking Extracellular Redox Remodeling with Intracellular Redox Metabolism [J].
Banerjee, Ruma .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (07) :4397-4402
[7]   Impedance-based cell monitoring: Barrier properties and beyond [J].
Benson K. ;
Cramer S. ;
Galla H.-J. .
Fluids and Barriers of the CNS, 10 (1)
[8]   The beautiful cell: high-content screening in drug discovery [J].
Bickle, Marc .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (01) :219-226
[9]   Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes [J].
Bray, Mark-Anthony ;
Singh, Shantanu ;
Han, Han ;
Davis, Chadwick T. ;
Borgeson, Blake ;
Hartland, Cathy ;
Kost-Alimova, Maria ;
Gustafsdottir, Sigrun M. ;
Gibson, Christopher C. ;
Carpenter, Anne E. .
NATURE PROTOCOLS, 2016, 11 (09) :1757-1774
[10]   Systems biology in drug discovery [J].
Butcher, EC ;
Berg, EL ;
Kunkel, EJ .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1253-1259