INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL (a, b, k)-CRITICAL COVERED GRAPHS

被引:18
作者
Zhou, Sizhong [1 ]
Wu, Jiancheng [1 ]
Liu, Hongxia [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
(G; F)-FACTORS;
D O I
10.1051/ro/2022119
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A graph G is a fractional (a, b, k)-critical covered graph if G-U is a fractional [a, b]-covered graph for every U subset of V(G) with |U| - K, which is first defined by (Zhou, Xu and Sun, Inf. Process. Lett. 152 (2019) 105838). Furthermore, they derived a degree condition for a graph to be a fractional (a, b, k)-critical covered graph. In this paper, we gain an independence number and connectivity condition for a graph to be a fractional (a, b, k)-critical covered graph and verify that G is a fractional (a, b, k)-critical covered graph if k(G) >= max {2b(a + 1)(b + 1) + 4bk + 5/4b, (a + 1)(2)alpha(G) + 4bk +5/4b}.
引用
收藏
页码:2535 / 2542
页数:8
相关论文
共 27 条
[1]   3-star factors in random d-regular graphs [J].
Assiyatun, Hilda ;
Wormald, Nicholas .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (08) :1249-1262
[2]   Minimum degree, independence number and pseudo [2, b]-factors in graphs [J].
Bekkai, Siham .
DISCRETE APPLIED MATHEMATICS, 2014, 162 :108-114
[3]   1-factor covers of regular graphs [J].
Belcastro, Sarah-marie ;
Young, Michael .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (05) :281-287
[4]   Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs [J].
Bian, Qiuju ;
Zhou, Sizhong .
FILOMAT, 2015, 29 (04) :757-761
[5]   Existence of all generalized fractional (g, f)-factors of graphs [J].
Egawa, Yoshimi ;
Kano, Mikio ;
Yokota, Maho .
DISCRETE APPLIED MATHEMATICS, 2020, 283 (283) :265-271
[6]   The Extension Degree Conditions for Fractional Factor [J].
Gao, Wei ;
Wang, Wei Fan ;
Guirao, Juan L. G. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (03) :305-317
[7]   A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited [J].
Gao, Wei ;
Guirao, Juan L. G. ;
Chen, Yao Jun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) :1227-1237
[8]  
Kotani K., 2010, Proceedings of the Japan Academy, Seires A, V86, P85
[9]  
[Li Zhenping 李珍萍], 2002, [运筹学学报, OR transactions], V6, P65
[10]   Characterizations of maximum fractional (g, f)-factors of graphs [J].
Liu, Guizhen ;
Zhang, Lanju .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) :2293-2299