Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers

被引:13
作者
Xia, Yuanliang [1 ]
Yang, Ruohan [2 ]
Zhu, Jianshu [1 ]
Wang, Hengyi [1 ]
Li, Yuehong [1 ]
Fan, Jiawei [3 ]
Fu, Changfeng [1 ]
机构
[1] First Hosp Jilin Univ, Dept Spine Surg, Changchun, Peoples R China
[2] First Hosp Jilin Univ, Canc Ctr, Changchun, Peoples R China
[3] First Hosp Jilin Univ, Dept Gastroenterol, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
nanomaterials; immunotherapy; abscopal effect; metastatic cancer; immune cells; TUMOR-ASSOCIATED MACROPHAGES; BREAST-CANCER; MYELOID CELLS; CPG OLIGODEOXYNUCLEOTIDES; INFLAMMATORY MONOCYTES; PHOTODYNAMIC THERAPY; CHECKPOINT BLOCKADE; DENDRITIC CELLS; CO-DELIVERY; TGF-BETA;
D O I
10.3389/fbioe.2022.890257
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
引用
收藏
页数:25
相关论文
共 165 条
[1]   IRF4 instructs effector Treg differentiation and immune suppression in human cancer [J].
Alvisi, Giorgia ;
Brummelman, Jolanda ;
Puccio, Simone ;
Mazza, Emilia M. C. ;
Tomada, Elisa Paoluzzi ;
Losurdo, Agnese ;
Zanon, Veronica ;
Peano, Clelia ;
Colombo, Federico S. ;
Scarpa, Alice ;
Alloisio, Marco ;
Vasanthakumar, Ajithkumar ;
Roychoudhuri, Rahul ;
Kallikourdis, Marinos ;
Pagani, Massimiliano ;
Lopci, Egesta ;
Novellis, Pierluigi ;
Blume, Jonas ;
Kallies, Axel ;
Veronesi, Giulia ;
Lugli, Enrico .
JOURNAL OF CLINICAL INVESTIGATION, 2020, 130 (06) :3137-3150
[2]   Intratumoral Comparison of Nanoparticle Entrapped Docetaxel (CPC634) with Conventional Docetaxel in Patients with Solid Tumors [J].
Atrafi, Florence ;
van Eerden, Ruben A. G. ;
Vlieg, Marte A. M. van Hylckama ;
Oomen-de Hoop, Esther ;
de Bruijn, Peter ;
Lolkema, Martijn P. ;
Moelker, Adriaan ;
Rijcken, Cristianne J. ;
Hanssen, Rob ;
Sparreboom, Alex ;
Eskens, Ferry A. L. M. ;
Mathijssen, Ron H. J. ;
Koolen, Stijn L. W. .
CLINICAL CANCER RESEARCH, 2020, 26 (14) :3537-3545
[3]   Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery [J].
Barberio, Antonio E. ;
Smith, Sean G. ;
Correa, Santiago ;
Nguyen, Cathy ;
Nhan, Bang ;
Melo, Mariane ;
Tokatlian, Talar ;
Suh, Heikyung ;
Irvine, Darrell J. ;
Hammond, Paula T. .
ACS NANO, 2020, 14 (09) :11238-11253
[4]   Gold nanoparticle mediated radiation response among key cell components of the tumour microenvironment for the advancement of cancer nanotechnology [J].
Bromma, Kyle ;
Cicon, Leah ;
Beckham, Wayne ;
Chithrani, Devika B. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10 [J].
Brown, RD ;
Pope, B ;
Murray, A ;
Esdale, W ;
Sze, DM ;
Gibson, J ;
Ho, PJ ;
Hart, D ;
Joshua, D .
BLOOD, 2001, 98 (10) :2992-2998
[6]   Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics [J].
Buss, Colin G. ;
Bhatia, Sangeeta N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) :13428-13436
[7]   Frontiers in cancer immunotherapy-a symposium report [J].
Cable, Jennifer ;
Greenbaum, Benjamin ;
Pe'er, Dana ;
Bollard, Catherine M. ;
Bruni, Sofia ;
Griffin, Matthew E. ;
Allison, James P. ;
Wu, Catherine J. ;
Subudhi, Sumit K. ;
Mardis, Elaine R. ;
Brentjens, Renier ;
Sosman, Jeffry A. ;
Cemerski, Saso ;
Zavitsanou, Anastasia-Maria ;
Proia, Theresa ;
Egeblad, Mikala ;
Nolan, Garry ;
Goswami, Sangeeta ;
Spranger, Stefani ;
Mackall, Crystal L. .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2021, 1489 (01) :30-47
[8]   CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma [J].
Cano-Mejia, Juliana ;
Shukla, Anshi ;
Ledezma, Debbie K. ;
Palmer, Erica ;
Villagra, Alejandro ;
Fernandes, Rohan .
TRANSLATIONAL ONCOLOGY, 2020, 13 (10)
[9]   Induction of antitumor immunity in mice by the combination of nanoparticle-based photothermolysis and anti-PD-1 checkpoint inhibition [J].
Cao, Qizhen ;
Wang, Wanqin ;
Zhou, Min ;
Huang, Qian ;
Wen, Xiaoxia ;
Zhao, Jun ;
Shi, Sixiang ;
Geng, Ku ;
Li, Fenge ;
Hatakeyama, Hiroto ;
Xu, Chunyu ;
Piwnica-Worms, David ;
Peng, Weiyi ;
Zhou, Dapeng ;
Sood, Anil K. ;
Li, Chun .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 25
[10]   Anti-tumour effects of a xenogeneic fibroblast activation protein-based whole cell tumour vaccine in murine tumour models [J].
Chen, Meihua ;
Xu, Guangchao ;
Fan, Ming ;
Jia, Hongyuan ;
Xiao, Ling ;
Lang, Jinyi .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2019, 47 (01) :4182-4193