Controllable vapor transport deposition of efficient Sb2(S,Se)3 solar cells via adjusting evaporation source area

被引:12
作者
Pan, Yanlin [1 ]
Zheng, Dongliang [1 ]
Chen, Jianxin [1 ]
Zhou, Jun [1 ]
Wang, Rui [2 ]
Pan, Xingyu [2 ]
Hu, Xiaobo [2 ]
Chen, Shaoqiang [2 ]
Yang, Pingxiong [1 ]
Tao, Jiahua [1 ]
Chu, Junhao [1 ,2 ]
机构
[1] East China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Sch Commun & Elect Engn, Sch Phys & Elect Sci,Minist Educ,Key Lab Polar Ma, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Dept Elect Engn, Shanghai 200241, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Vapor transport deposition; Evaporation source area; High efficiency; Sb-2(S; Se)(3) solar cells; SB2SE3; THIN-FILMS; PERFORMANCE; SELENIZATION; GROWTH;
D O I
10.1016/j.jallcom.2022.164320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vapor transport deposition (VTD) processing is one of the most promising techniques to fabricate quasi one-dimensional antimony selenosulfide (Sb-2(S,Se)(3)) photovoltaic materials with micrometer-scale grains and preferred crystal orientations. However, current researches rarely involve the effect of evaporation source on the film growth by VTD. Herein, we adopt Sb-2(S,Se)(3) tablets as evaporation sources to develop Sb-2(S,Se)(3) solar cells for the first time. We find that increasing the evaporation source area can effectively improve the deposition rate of Sb-2(S,Se)(3) films, leading to an enhancement of the (221) preferred orientation and columnar large grains of the absorber layers, further improves the device photovoltaic performance. With fine-tuning of the evaporation source area, the optimized Sb-2(S,Se)(3)solar cells show a high efficiency up to 7.6%. This study proposes a unique strategy to improving the quality of low-dimensional materials and a deeper understanding of the growth mechanism via vacuum methods. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Full-inorganic Sb2(S, Se)3 solar cells using carbon as both hole selection material and electrode
    Wang, Weihuang
    Chen, Guilin
    Wang, Zhezhe
    Wang, Ke
    Chen, Shuiyuan
    Huang, Zhigao
    Wang, Xiaomin
    Chen, Tao
    Zhu, Changfei
    Kong, Xiangkai
    ELECTROCHIMICA ACTA, 2018, 290 : 457 - 464
  • [32] Unveiling the Dual Impact of CuI Layer and Se Content in Sb2(S, Se)3 Photocathodes for Solar Water Splitting
    Chun, Hao Zhe
    Lie, Stener
    Ahmed, Mahmoud G.
    Wong, Lydia H.
    SOLAR RRL, 2024, 8 (23):
  • [33] Construction of CdS/Sb2Se3 planar heterojunction by full vapor transport deposition
    Lin, Wen-Wei
    Wang, Ning-Wei
    Lan, Ze-Ying
    Fu, Zhe
    Huang, Zhi-Ping
    Lin, Li-Mei
    Ye, Qing-Ying
    Chen, Shui-Yuan
    Chen, Gui-Lin
    VACUUM, 2022, 206
  • [34] High-Efficiency Sb2(S,Se)3 Solar Cells with New Hole Transport Layer-Free Back Architecture via 2D Titanium-Carbide Mxene
    Li, Hu
    Lin, Limei
    Yao, Liquan
    Wu, Fengying
    Wei, Dong
    Liu, Guoliang
    Huang, Zhigao
    Chen, Shuiyuan
    Li, Jianmin
    Chen, Guilin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (10)
  • [35] Dual back interface engineering optimized charge carrier dynamics in Sb2(S,Se)3 photocathodes for efficient solar hydrogen production
    Aziz, Hafiz Sartaj
    Imran, Tahir
    Ahmad, Munir
    Chen, Guo-Jie
    Luo, Ping
    Ren, Dong-Lou
    Zou, Bing-Suo
    Hu, Ju-Guang
    Su, Zheng-Hua
    Yan, Pei-Guang
    Liang, Guang-Xing
    Chen, Shuo
    CHEMICAL SCIENCE, 2024, : 393 - 409
  • [36] Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer
    Wang, Weihuang
    Wang, Xiaomin
    Chen, Guilin
    Chen, Binwen
    Cai, Huiling
    Chen, Tao
    Chen, Shuiyuan
    Huang, Zhigao
    Zhu, Changfei
    Zhang, Yi
    SOLAR RRL, 2018, 2 (11):
  • [37] Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
    Tang, Rong
    Chen, Xing-Ye
    Liang, Guang-Xing
    Su, Zheng-Hua
    Luo, Jing-ting
    Fan, Ping
    SURFACE & COATINGS TECHNOLOGY, 2019, 360 : 68 - 72
  • [38] Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition
    Kondrotas, Rokas
    Zhang, Jun
    Wang, Chong
    Tang, Jiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 199 : 16 - 23
  • [39] Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation
    Kumar, Vikash
    Artegiani, Elisa
    Kumar, Arun
    Mariotto, Gino
    Piccinelli, Fabio
    Romeo, Alessandro
    SOLAR ENERGY, 2019, 193 : 452 - 457
  • [40] Manipulating the Electrical Properties of Sb2(S,Se)3Film for High-Efficiency Solar Cell
    Wang, Xiaomin
    Tang, Rongfeng
    Jiang, Chenhui
    Lian, Weitao
    Ju, Huanxin
    Jiang, Guoshun
    Li, Zhiqiang
    Zhu, Changfei
    Chen, Tao
    ADVANCED ENERGY MATERIALS, 2020, 10 (40)