Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes

被引:17
作者
Zavileyskiy, Lev [1 ]
Bunik, Victoria [1 ,2 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Belozersky Inst Physicochem Biol, Dept Biokinet, Moscow 119991, Russia
[3] Sechenov Univ, Dept Biochem, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
intracellular localization of p53; heterologous non-nuclear complexes of p53; p53; sequestration; trafficking; thiol; disulfide-dependent regulation of p53 functions; MITOCHONDRIAL PERMEABILITY TRANSITION; WILD-TYPE P53; RIBONUCLEOTIDE REDUCTASE GENE; MUTANT P53; DNA-BINDING; SUBCELLULAR-LOCALIZATION; TETRAMERIZATION DOMAIN; REDOX REGULATION; STRUCTURAL BASIS; CELL-DEATH;
D O I
10.3390/biom12020327
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein-protein interactions of p53.
引用
收藏
页数:22
相关论文
共 120 条
  • [1] Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol γ
    Achanta, G
    Sasaki, R
    Feng, L
    Carew, JS
    Lu, WQ
    Pelicano, H
    Keating, MJ
    Huang, P
    [J]. EMBO JOURNAL, 2005, 24 (19) : 3482 - 3492
  • [2] An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore
    Alavian, Kambiz N.
    Beutner, Gisela
    Lazrove, Emma
    Sacchetti, Silvio
    Park, Han-A
    Licznerski, Pawel
    Li, Hongmei
    Nabili, Panah
    Hockensmith, Kathryn
    Graham, Morven
    Porter, George A., Jr.
    Jonas, Elizabeth A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (29) : 10580 - 10585
  • [3] Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches
    Alvarado-Ortiz, Eduardo
    de la Cruz-Lopez, Karen Griselda
    Becerril-Rico, Jared
    Sarabia-Sanchez, Miguel Angel
    Ortiz-Sanchez, Elizabeth
    Garcia-Carranca, Alejandro
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 8
  • [4] Stabilization of wild-type p53 by hypoxia-inducible factor 1α
    An, WG
    Kanekal, M
    Simon, MC
    Maltepe, E
    Blagosklonny, MV
    Neckers, LM
    [J]. NATURE, 1998, 392 (6674) : 405 - 408
  • [5] The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells
    Baptiste N.
    Friedlander P.
    Chen X.
    Prives C.
    [J]. Oncogene, 2002, 21 (1) : 9 - 21
  • [6] TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    Bensaad, Karim
    Tsuruta, Atsushi
    Selak, Mary A.
    Calvo Vidal, M. Nieves
    Nakano, Katsunori
    Bartrons, Ramon
    Gottlieb, Eyal
    Vousden, Karen H.
    [J]. CELL, 2006, 126 (01) : 107 - 120
  • [7] Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase
    Bergeaud, Marie
    Mathieu, Lise
    Guillaume, Arnaud
    Moll, Ute M.
    Mignotte, Bernard
    Le Floch, Nathalie
    Vayssiere, Jean-Luc
    Rincheval, Vincent
    [J]. CELL CYCLE, 2013, 12 (17) : 2781 - 2793
  • [8] Intracellular signaling by the unfolded protein response
    Bernales, Sebastian
    Papa, Feroz R.
    Walter, Peter
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 : 487 - 508
  • [9] Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
    Bourdon, Alice
    Minai, Limor
    Serre, Valerie
    Jais, Jean-Philippe
    Sarzi, Emmanuelle
    Aubert, Sophie
    Chretien, Dominique
    de Lonlay, Pascale
    Paquis-Flucklinger, Veronique
    Arakawa, Hirofumi
    Nakamura, Yusuke
    Munnich, Arnold
    Rotig, Agnes
    [J]. NATURE GENETICS, 2007, 39 (06) : 776 - 780
  • [10] The Rich World of p53 DNA Binding Targets: The Role of DNA Structure
    Brazda, Vaclav
    Fojta, Miroslav
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (22)