Permafrost carbon-climate feedbacks accelerate global warming

被引:656
作者
Koven, Charles D. [1 ,2 ]
Ringeval, Bruno [1 ]
Friedlingstein, Pierre [3 ]
Ciais, Philippe [1 ]
Cadule, Patricia [1 ]
Khvorostyanov, Dmitry [4 ]
Krinner, Gerhard [5 ]
Tarnocai, Charles [6 ]
机构
[1] CEA, CNRS, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[4] Ecole Polytech, Lab Meteorol Dynam, F-91128 Palaiseau, France
[5] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, Unite Mixte Rech 5183, F-38402 St Martin Dheres, France
[6] Agr & Agri Food Canada, Ottawa, ON K1A 0C5, Canada
关键词
carbon cycle; land surface models; cryosphere; soil organic matter; active layer; SENSITIVITY; CYCLE; UNCERTAINTY; RELEASE; BALANCE; ALASKA; THAW;
D O I
10.1073/pnas.1103910108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60 degrees N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios ( SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41-70 TgCH(4)/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.
引用
收藏
页码:14769 / 14774
页数:6
相关论文
共 43 条
  • [1] Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate
    Beer, Christian
    Reichstein, Markus
    Tomelleri, Enrico
    Ciais, Philippe
    Jung, Martin
    Carvalhais, Nuno
    Roedenbeck, Christian
    Arain, M. Altaf
    Baldocchi, Dennis
    Bonan, Gordon B.
    Bondeau, Alberte
    Cescatti, Alessandro
    Lasslop, Gitta
    Lindroth, Anders
    Lomas, Mark
    Luyssaert, Sebastiaan
    Margolis, Hank
    Oleson, Keith W.
    Roupsard, Olivier
    Veenendaal, Elmar
    Viovy, Nicolas
    Williams, Christopher
    Woodward, F. Ian
    Papale, Dario
    [J]. SCIENCE, 2010, 329 (5993) : 834 - 838
  • [2] Beven KJ., 1979, HYDROL SCI B, V24, P43, DOI [10.1080/02626667909491834, DOI 10.1080/02626667909491834]
  • [3] Systematic biases in large-scale estimates of wetland methane emissions arising from water table formulations
    Bohn, Theodore J.
    Lettenmaier, Dennis P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [4] Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4)
    Bonan, Gordon B.
    Levis, Samuel
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [5] Contribution of anthropogenic and natural sources to atmospheric methane variability
    Bousquet, P.
    Ciais, P.
    Miller, J. B.
    Dlugokencky, E. J.
    Hauglustaine, D. A.
    Prigent, C.
    Van der Werf, G. R.
    Peylin, P.
    Brunke, E. -G.
    Carouge, C.
    Langenfelds, R. L.
    Lathiere, J.
    Papa, F.
    Ramonet, M.
    Schmidt, M.
    Steele, L. P.
    Tyler, S. C.
    White, J.
    [J]. NATURE, 2006, 443 (7110) : 439 - 443
  • [6] Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850
    Brohan, P.
    Kennedy, J. J.
    Harris, I.
    Tett, S. F. B.
    Jones, P. D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D12)
  • [7] Brown J., 2000, Polar Geography, V3, P165, DOI [10.1080/10889370009377698, DOI 10.1080/10889370009377698]
  • [8] Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements
    Cadule, P.
    Friedlingstein, P.
    Bopp, L.
    Sitch, S.
    Jones, C. D.
    Ciais, P.
    Piao, S. L.
    Peylin, P.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2010, 24
  • [9] Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil
    Carrasco, Jonathan J.
    Neff, Jason C.
    Harden, Jennifer W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2006, 111 (G2)
  • [10] Influence of runoff parameterization on continental hydrology: Comparison between the Noah and the ISBA land surface models
    Decharme, B.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D19)