The ideal source of radiation for extreme ultraviolet lithography will produce intense light in a 2% bandwidth centred at 13.5 nm, while the debris and out-of-band radiation produced will be limited to prevent adverse effects to the multilayer optics in the lithography system. In this study ways to optimise plasma sources containing tin are presented. The optimum power density for a tin slab target, with a fixed spotsize, is determined, while the effects of power density on ceramic targets, where tin is present only as a few percent in a target of mainly low Z elements, is also investigated. It has been found that the in-band radiation is increased when the concentration is 5-6%, while the out-of-band radiation is dramatically reduced, due the the low average Z of the target constituents, with conversion efficiencies of over 2.5% recorded. The power density needed to optimise the emission from ceramic targets was found to be greater than that required for the pure tin case. In addition, if the target is first irradiated with a pre-pulse, the conversion efficiency is seen to increase.