Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-omics data

被引:17
作者
Liu, Qian [1 ,2 ]
Cheng, Bowen [3 ]
Jin, Yongwon [1 ]
Hu, Pingzhao [1 ,2 ,3 ,4 ]
机构
[1] Univ Manitoba, Dept Biochem & Med Genet, Room 308,Basic Med Sci Bldg,745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[4] CancerCare Manitoba Res Inst, Winnipeg, MB, Canada
关键词
Breast cancer subtyping; Multi-omics data; Bayesian tensor factorization; Consensus clustering; Survival analysis; GENE-EXPRESSION; CLASS DISCOVERY; PROGNOSIS; CLASSIFICATION; IDENTIFICATION; VALIDATION; BIOMARKERS; NETWORK; MODEL; RANK;
D O I
10.1016/j.jbi.2021.103958
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Breast cancer is a highly heterogeneous disease. Subtyping the disease and identifying the genomic features driving these subtypes are critical for precision oncology for breast cancer. This study focuses on developing a new computational approach for breast cancer subtyping. We proposed to use Bayesian tensor factorization (BTF) to integrate multi-omics data of breast cancer, which include expression profiles of RNA-sequencing, copy number variation, and DNA methylation measured on 762 breast cancer patients from The Cancer Genome Atlas. We applied a consensus clustering approach to identify breast cancer subtypes using the factorized latent features by BTF. Subtype-specific survival patterns of the breast cancer patients were evaluated using Kaplan-Meier (KM) estimators. The proposed approach was compared with other state-of-the-art approaches for cancer subtyping. The BTF-subtyping analysis identified 17 optimized latent components, which were used to reveal six major breast cancer subtypes. Out of all different approaches, only the proposed approach showed distinct survival patterns (p < 0.05). Statistical tests also showed that the identified clusters have statistically significant distributions. Our results showed that the proposed approach is a promising strategy to efficiently use publicly available multi-omics data to identify breast cancer subtypes.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression [J].
Anders, Carey K. ;
Hsu, David S. ;
Broadwater, Gloria ;
Acharya, Chaitanya R. ;
Foekens, John A. ;
Zhang, Yi ;
Wang, Yixin ;
Marcom, P. Kelly ;
Marks, Jeffrey R. ;
Febbo, Phillip G. ;
Nevins, Joseph R. ;
Potti, Anil ;
Blackwell, Kimberly L. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (20) :3324-3330
[2]  
Bingham H.G., 1981, CANCER RES, V67, P703, DOI [10.1097/00006534-198105000-00052, DOI 10.1097/00006534-198105000-00052]
[3]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[4]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[5]   InterSIM: Simulation tool for multiple integrative 'omic datasets' [J].
Chalise, Prabhakar ;
Raghavan, Rama ;
Fridley, Brooke L. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 :69-74
[6]   Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool [J].
Chen, Edward Y. ;
Tan, Christopher M. ;
Kou, Yan ;
Duan, Qiaonan ;
Wang, Zichen ;
Meirelles, Gabriela Vaz ;
Clark, Neil R. ;
Ma'ayan, Avi .
BMC BIOINFORMATICS, 2013, 14
[7]   Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes [J].
Chen, Lei ;
Zeng, Tao ;
Pan, Xiaoyong ;
Zhang, Yu-Hang ;
Huang, Tao ;
Cai, Yu-Dong .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (17)
[8]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[9]  
Dai XF, 2015, AM J CANCER RES, V5, P2929
[10]  
Donaldson J., 2016, tsne: T-Distributed Stochastic Neighbor Embedding for R (t-SNE)