A fixed point result with applications in the study of viscoplastic frictionless contact problems

被引:44
作者
Sofonea, Mircea [1 ]
Avramescu, Cezar [2 ]
Matei, Andaluzia [2 ]
机构
[1] Univ Perpignan, Lab Math & Phys Syst, F-66025 Perpignan, France
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
fixed point; Frechet space; nonlinear operator; viscoplastic body; frictionless contact; normal compliance; weak solution;
D O I
10.3934/cpaa.2008.7.645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C(R+; X) denote the Frechet space of continuous functions defined on R+ = [0, infinity) with values on a real Banach space (X, || . || x). We prove a fixed point theorem for operators Lambda : C(R+; X) -> C(R+; X) which satisfy a sequence of inequalities involving an integral term. Then we consider a mathematical model which describes the frictionless contact between a viscoplastic body and a deformable foundation. The process is quasistatic and is studied on the unbounded interval of time [0, infinity). We provide the variational formulation of the problem, then we use the abstract fixed point theorem to prove the existence of a unique weak solution to the model. We complete our study with a regularity result.
引用
收藏
页码:645 / 658
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1993, FUNCTIONAL NUMERICAL
[2]  
[Anonymous], 1987, Topological vector classes, DOI DOI 10.1007/978-3-642-61715-7
[3]  
Corduneanu C., 1965, ANN MAT PUR APPL, V67, P349
[4]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[5]   A frictionless contact problem for elastic-viscoplastic materials with normal compliance:: Numerical analysis and computational experiments [J].
Fernández-García, JR ;
Sofonea, M ;
Viaño, JM .
NUMERISCHE MATHEMATIK, 2002, 90 (04) :689-719
[6]  
Han W., 2002, AMS IP STUDIES ADV M, V30, DOI DOI 10.1090/AMSIP/030
[7]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA
[8]   FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE [J].
KLARBRING, A ;
MIKELIC, A ;
SHILLOR, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1988, 26 (08) :811-832
[9]   EXISTENCE AND UNIQUENESS RESULTS FOR DYNAMIC CONTACT PROBLEMS WITH NONLINEAR NORMAL AND FRICTION INTERFACE LAWS [J].
MARTINS, JAC ;
ODEN, JT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (03) :407-428
[10]  
Massera J. L., 1966, Linear Differential Equations and Function Spaces