De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models

被引:44
作者
Atance, Sara Romeo [1 ,2 ]
Diez, Juan Viguera [1 ,2 ]
Engkvist, Ola [1 ,2 ]
Olsson, Simon [2 ]
Mercado, Rocio [1 ]
机构
[1] AstraZeneca Gothenburg, Mol Discovery Sci A1, R&D, S-43150 Molndal, Sweden
[2] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41258 Gothenburg, Sweden
关键词
MOLECULAR GENERATION;
D O I
10.1021/acs.jcim.2c00838
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Machine learning provides effective computational tools for exploring the chemical space via deep generative models. Here, we propose a new reinforcement learning scheme to finetune graph-based deep generative models for de novo molecular design tasks. We show how our computational framework can successfully guide a pretrained generative model toward the generation of molecules with a specific property profile, even when such molecules are not present in the training set and unlikely to be generated by the pretrained model. We explored the following tasks: generating molecules of decreasing/increasing size, increasing drug-likeness, and increasing bioactivity. Using the proposed approach, we achieve a model which generates diverse compounds with predicted DRD2 activity for 95% of sampled molecules, outperforming previously reported methods on this metric.
引用
收藏
页码:4863 / 4872
页数:10
相关论文
共 50 条
[1]  
[Anonymous], RDKit: Open-Source Cheminformatics Software
[2]   SMILES-based deep generative scaffold decorator for de-novo drug design [J].
Arus-Pous, Josep ;
Patronov, Atanas ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
[3]   The properties of known drugs .1. Molecular frameworks [J].
Bemis, GW ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) :2887-2893
[4]  
Bickerton GR, 2012, NAT CHEM, V4, P90, DOI [10.1038/NCHEM.1243, 10.1038/nchem.1243]
[5]   REINVENT 2.0: An AI Tool for De Novo Drug Design [J].
Blaschke, Thomas ;
Arus-Pous, Josep ;
Chen, Hongming ;
Margreitter, Christian ;
Tyrchan, Christian ;
Engkvist, Ola ;
Papadopoulos, Kostas ;
Patronov, Atanas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5918-5922
[6]  
Briot J-P, 2017, ARXIV
[7]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[8]  
Buhmann M., 2011, Encyclopedia of Machine Learning, P863
[9]   The rise of deep learning in drug discovery [J].
Chen, Hongming ;
Engkvist, Ola ;
Wang, Yinhai ;
Olivecrona, Marcus ;
Blaschke, Thomas .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1241-1250
[10]  
Cho K., 2014, PROC 8 WORKSHOP SYNT, P103, DOI DOI 10.3115/V1/W14-4012