A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications

被引:47
作者
Bhunia, Pintu [1 ]
Feki, Kais [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Univ Sfax, Sfax, Tunisia
关键词
Positive operator; Numerical radius; Orthogonality; Parallelism; A-rank one operator; INEQUALITIES;
D O I
10.1007/s41980-020-00392-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to introduce and characterize the numerical radius orthogonality of operators on a complex Hilbert space H which are bounded with respect to the seminorm induced by a positive operator A on H. Moreover, a characterization of the A-numerical radius parallelism for A-rank one operators is obtained. As applications of the results obtained, we derive some A-numerical radius inequalities of operator matrices, where A is the operator diagonal matrix whose each diagonal entry is a positive operator A on a complex Hilbert space H.
引用
收藏
页码:435 / 457
页数:23
相关论文
共 26 条
[1]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[2]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[3]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[4]   On joint spectral radius of commuting operators in Hilbert spaces [J].
Baklouti, Hamadi ;
Feki, Kais .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 :455-463
[5]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[6]  
BHUNIA P, ARXIV191006775V3MATH
[7]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[8]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511
[9]   Numerical radius inequalities of operator matrices with applications [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09) :1635-1644
[10]   Numerical radius inequalities and its applications in estimation of zeros of polynomials [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 573 :166-177