When Subterranean Termites Challenge the Rules of Fungal Epizootics

被引:65
作者
Chouvenc, Thomas [1 ]
Su, Nan-Yao [1 ]
机构
[1] Univ Florida, Dept Entomol & Nematol, Ft Lauderdale, FL 33314 USA
基金
美国农业部;
关键词
RETICULITERMES-FLAVIPES ISOPTERA; BIOLOGICAL-CONTROL AGENTS; METARHIZIUM-ANISOPLIAE; COPTOTERMES-FORMOSANUS; DISEASE RESISTANCE; DEFENSE-MECHANISMS; RHINOTERMITIDAE; INSECT; ANTIFUNGAL; EVOLUTION;
D O I
10.1371/journal.pone.0034484
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle.
引用
收藏
页数:7
相关论文
共 68 条
[1]   THEORETICAL BASIS FOR THE USE OF PATHOGENS AS BIOLOGICAL-CONTROL AGENTS OF PEST SPECIES [J].
ANDERSON, RM .
PARASITOLOGY, 1982, 84 (APR) :3-33
[2]  
[Anonymous], 2002, SAS/STAT User's Guide, Version 6.0
[3]   Examination of the immune responses of males and workers of the leaf-cutting ant Acromyrmex echinatior and the effect of infection [J].
Baer, B ;
Krug, A ;
Boomsma, JJ ;
Hughes, WOH .
INSECTES SOCIAUX, 2005, 52 (03) :298-303
[4]   Adaptive evolution in subterranean termite antifungal peptides [J].
Bulmer, M. S. ;
Lay, F. ;
Hamilton, C. .
INSECT MOLECULAR BIOLOGY, 2010, 19 (05) :669-674
[5]   Targeting an antimicrobial effector function in insect immunity as a pest control strategy [J].
Bulmer, Mark S. ;
Bachelet, Ido ;
Raman, Rahul ;
Rosengaus, Rebeca B. ;
Sasisekharan, Ram .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (31) :12652-12657
[6]   Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses [J].
Chouvenc, T. ;
Robert, A. ;
Semon, E. ;
Bordereau, C. .
INSECTES SOCIAUX, 2012, 59 (01) :119-125
[7]  
Chouvenc T, 2008, J ECON ENTOMOL, V101, P885, DOI 10.1603/0022-0493(2008)101[885:IBTSTR]2.0.CO
[8]  
2
[9]   PLANAR ARENAS FOR USE IN LABORATORY BIOASSAY STUDIES OF SUBTERRANEAN TERMITES (RHINOTERMITIDAE) [J].
Chouvenc, Thomas ;
Bardunias, Paul ;
Li, Hou-Feng ;
Elliott, Monica L. ;
Su, Nan-Yao .
FLORIDA ENTOMOLOGIST, 2011, 94 (04) :817-826
[10]   Fifty years of attempted biological control of termites - Analysis of a failure [J].
Chouvenc, Thomas ;
Su, Nan-Yao ;
Grace, J. Kenneth .
BIOLOGICAL CONTROL, 2011, 59 (02) :69-82