Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems

被引:9
作者
Bestehorn, M [1 ]
Friedrich, R [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys & Synerget, D-70550 Stuttgart, Germany
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 03期
关键词
D O I
10.1103/PhysRevE.59.2642
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss a theoretical description of the formation of cellular patterns exhibiting defects, grain boundaries, and spiral patterns in nonequilibrium large-aspect-ratio systems by means of rotationally invariant order parameter equations. Starting from evolution equations of general form, we show that the order parameter equations which can be derived close to a bifurcation point in general involve nonlinear terms which are nonlocal. We present a suitable approximation scheme of these terms by local ones which is based on a gradient expansion. A truncation of this expansion leads to model equations which are widely used in the theoretical treatment of natural patterns in complex systems. [S1063-651X(99)01003-X].
引用
收藏
页码:2642 / 2652
页数:11
相关论文
共 44 条
[1]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[2]   SPACE-TIME COMPLEXITY IN NONLINEAR OPTICS [J].
ARECCHI, FT .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) :450-464
[3]   PHASE AND AMPLITUDE INSTABILITIES FOR BENARD-MARANGONI CONVECTION IN FLUID LAYERS WITH LARGE ASPECT RATIO [J].
BESTEHORN, M .
PHYSICAL REVIEW E, 1993, 48 (05) :3622-3634
[4]   HEXAGONAL AND SPIRAL PATTERNS OF THERMAL-CONVECTION [J].
BESTEHORN, M ;
FANTZ, M ;
FRIEDRICH, R ;
HAKEN, H .
PHYSICS LETTERS A, 1993, 174 (1-2) :48-52
[5]   TWO-DIMENSIONAL TRAVELING WAVE PATTERNS IN NONEQUILIBRIUM SYSTEMS [J].
BESTEHORN, M ;
FRIEDRICH, R ;
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (02) :265-274
[6]   A CALCULATION OF TRANSIENT SOLUTIONS DESCRIBING ROLL AND HEXAGON FORMATION IN THE CONVECTION INSTABILITY [J].
BESTEHORN, M ;
HAKEN, H .
PHYSICS LETTERS A, 1983, 99 (6-7) :265-267
[7]  
Busse F.H., 1990, NONLINEAR EVOLUTION
[8]   ON STABILITY OF 2-DIMENSIONAL CONVECTION IN A LAYER HEATED FROM BELOW [J].
BUSSE, FH .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :140-&
[9]   NONLINEAR PROPERTIES OF THERMAL-CONVECTION [J].
BUSSE, FH .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1929-&
[10]   CONVECTION IN A ROTATING LAYER - SIMPLE CASE OF TURBULENCE [J].
BUSSE, FH ;
HEIKES, KE .
SCIENCE, 1980, 208 (4440) :173-175