Sobolev orthogonal polynomials defined via gradient on the unit ball

被引:21
作者
Xu, Yuan [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Sobolev orthogonal polynomials; several variables; unit ball;
D O I
10.1016/j.jat.2007.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit family of polynomials on the unit ball B(d) of R(d) is constructed, so that it is an orthonormal family with respect to the inner product < f, g > = rho integral(Bd) del f(x) . del g(x) dx + L(fg), where rho > 0, del is the gradient, and L(fg) is either the inner product on the sphere S(d-1) or f(0)g(0). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 65
页数:14
相关论文
共 13 条
[1]  
Atkinson K., 2005, J INTEGRAL EQUAT, V17, P223, DOI DOI 10.1216/JIEA/1181075333
[2]  
Dunkl C F., 2001, Orthogonal polynomials of several variables
[3]  
FORBES G, COMMUNICATION
[4]  
García-Ripoll JJ, 2001, SIAM J SCI COMPUT, V23, P1315
[5]  
Gautschi W., 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. [2205.12815, 220512815]
[6]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[7]  
Jung I. H., 1997, COMM KOREAN MATH SOC, V12, P603
[8]   Sobolev orthogonal polynomials in two variables and second order partial differential equations [J].
Lee, Jeong Keun ;
Littlejohn, L. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :1001-1017
[9]   Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports [J].
Marcellan, Francisco ;
Jose Moreno Balcazar, Juan .
ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (02) :163-192
[10]   Analytic aspects of Sobolev orthogonal polynomials revisited [J].
Martínez-Finkelshtein, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :255-266