Machine Learning Based Identification and Classification of Field-Operation Caused Solar Panel Failures Observed in Electroluminescence Images

被引:19
作者
Bordihn, Stefan [1 ]
Fladung, Andreas [2 ]
Schlipf, Jan [2 ]
Kontges, Marc [1 ]
机构
[1] Inst Solar Energy Res Hamelin, D-31860 Emmerthal, Germany
[2] Aerial PV Inspect GmbH, D-52064 Aachen, Germany
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2022年 / 12卷 / 03期
关键词
Principal component analysis; Solar panels; Training; Photovoltaic cells; Machine learning; Kernel; Degradation; Electroluminescence (EL) imaging; field operation failures; machine learning; silicon solar panels; POTENTIAL-INDUCED DEGRADATION; PHOTOVOLTAIC MODULES; CELLS;
D O I
10.1109/JPHOTOV.2022.3150725
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Failure or degradation effects lead to power losses in solar panels during their field operation and are identified commonly by electroluminescence (EL) imaging. Some failures like potential-induced degradation (PID) and light and enhanced temperature induced degradation (LeTID) require an identification of the EL pattern over the entire solar panel. As the manual process of analyzing patterns is prone to error, we seek for an automatic detection of these failure types. We predict automatically the failure types PID and LeTID by adopting the principal component analysis (PCA) method in combination with a k-nearest neighbor (kNN) classifier. We increase the explained variance of the PCA by 4 %abs using a Gaussian blurring preprocessing step and gain insights into the basic mechanism of the machine learning algorithm by analyzing schematic EL images. The kNN classifier predicts the failure classes in the same way as the expert. Finally, we work with a larger test dataset of 40 similar images to mimic a field-typical user case and meet again the expert classification.
引用
收藏
页码:827 / 832
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2018, 60904132018 IECTS
[2]  
[Anonymous], 1989, Principal components analysis
[3]  
[Anonymous], COURTESY INGENIEURBU
[4]   Segmentation of photovoltaic module cells in uncalibrated electroluminescence images [J].
Deitsch, Sergiu ;
Buerhop-Lutz, Claudia ;
Sovetkin, Evgenii ;
Steland, Ansgar ;
Maier, Andreas ;
Gallwitz, Florian ;
Riess, Christian .
MACHINE VISION AND APPLICATIONS, 2021, 32 (04)
[5]   Automatic classification of defective photovoltaic module cells in electroluminescence images [J].
Deitsch, Sergiu ;
Christlein, Vincent ;
Berger, Stephan ;
Buerhop-Lutz, Claudia ;
Maier, Andreas ;
Gallwitz, Florian ;
Riess, Christian .
SOLAR ENERGY, 2019, 185 :455-468
[6]  
Hanwha Q, CELLS WHITE PAPER CE
[7]  
Jahn U., 2018, Review on Infrared and Electroluminescence Imaging for PV Field Applications
[8]   A FUZZY K-NEAREST NEIGHBOR ALGORITHM [J].
KELLER, JM ;
GRAY, MR ;
GIVENS, JA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (04) :580-585
[9]  
Kersten, 2015, P 12 WORKSH PHOT MOD
[10]   Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature [J].
Kersten, Friederike ;
Engelhart, Peter ;
Ploigt, Hans-Christoph ;
Stekolnikov, Andrey ;
Lindner, Thomas ;
Stenzel, Florian ;
Bartzsch, Matthias ;
Szpeth, Andy ;
Petter, Kai ;
Heitmann, Johannes ;
Mueller, Joerg W. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 142 :83-86