Fractional spectral moments for digital simulation of multivariate wind velocity fields

被引:12
作者
Cottone, Giulio [1 ,2 ]
Di Paola, Mario [2 ]
机构
[1] Tech Univ Munich, Engn Risk Anal Grp, D-80333 Munich, Germany
[2] Univ Palermo, Dipartimento Ingn Civile Aerospaziale & Ambiental, I-90128 Palermo, Italy
关键词
Digital simulation of Gaussian stationary processes; Multivariate wind velocity field; Fractional spectral moments; Fractional calculus; Generalized Taylor form; MODEL;
D O I
10.1016/j.jweia.2011.03.006
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, a new method for the digital simulation of multivariate wind velocity fields by fractional spectral moments function is proposed. Firstly, a digital linear filter whose coefficients are fractional spectral moments of the system's transfer function is constructed. Then, it is shown that by applying some basic concepts of fractional calculus, the samples of the target process can be simulated as superposition of Riesz fractional derivatives of a Gaussian white noise processes. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:741 / 747
页数:7
相关论文
共 21 条
[1]  
COTTONE G, 2009, SAFETY RELIABILITY R, P697
[2]   A new representation of power spectral density and correlation function by means of fractional spectral moments [J].
Cottone, Giulio ;
Di Paola, Mario .
PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (03) :348-353
[3]   A novel exact representation of stationary colored Gaussian processes (fractional differential approach) [J].
Cottone, Giulio ;
Di Paola, Mario ;
Santoro, Roberta .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
[4]   On the use of fractional calculus for the probabilistic characterization of random variables [J].
Cottone, Giulio ;
Di Paola, Mario .
PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (03) :321-330
[5]   Path integral solution by fractional calculus [J].
Cottone, Giulio ;
Di Paola, Mario ;
Pirrotta, Antonina .
ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
[6]   AUTO-REGRESSIVE MODEL FOR NONSTATIONARY STOCHASTIC PROCESSES [J].
DEODATIS, G ;
SHINOZUKA, M .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1988, 114 (11) :1995-2012
[7]  
DEODATIS G, 1995, COMPUTATIONAL STOCHASTIC MECHANICS, P297
[8]   Digital generation of multivariate wind field processes [J].
Di Paola, M ;
Gullo, I .
PROBABILISTIC ENGINEERING MECHANICS, 2001, 16 (01) :1-10
[10]  
Eaton J.W., 2002, GNU Octave Manual