Heparin and heparan sulfate biosynthesis

被引:203
作者
Sugahara, K [1 ]
Kitagawa, H [1 ]
机构
[1] Kobe Pharmaceut Univ, Dept Biochem, Higashinada Ku, Kobe, Hyogo 6588558, Japan
关键词
glycosaminoglycans; glycosyltransferases; heparan sulfate; heparin; proteoglycans; sulfotransferases; uronic acid epimerase;
D O I
10.1080/15216540214928
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heparan sulfate is one of the most informationally rich biopolymers in Nature. Its simple sugar backbone is variously modified to different degrees depending on the cellular conditions. Thus, it matures to have an enormously complicated structure, which most likely exhibits a considerable number of unique overlapping sequences with peculiar sulfation profiles. Such sequences are recognized by specific complementary proteins, which form a huge group of "heparin-binding proteins," and the sugar sequences in turn support unique functions of the respective proteins through specific interactions. The heparan sulfate sequences are not directly encoded by genes, but are created by elaborate biosynthetic mechanisms, which ensure the generation of these indispensable sequences. In heparan sulfate biosynthesis, the tetrasaccharide sequence (GlcA-Gal-Gal-Xyl-), designated the protein linkage region, is first assembled on a specific Ser residue at the glycosaminoglycan attachment site of a core protein. A heparan sulfate chain is then polymerized on this fragment by alternate additions of GlcNAc and GlcA through the actions of glycosyltransferases with overlapping specificities encoded by the tumor suppressor EXT family genes. Then follow various modifications by N-deacetylation and N-sulfation of glucosamine, C5-epimerization of GlcA and multiple O-sulfations of the component sugars. Recent studies have achieved purification of several, and molecular cloning of most, of the enzymes responsible for these reactions. Some of these enzymes are bifunctional. The availability of cDNA probes has facilitated elucidation of the crystal structures for two of the biosynthetic enzymes, demonstration of their intracellular location, and their occurrence in complexes to achieve rapid and efficient synthesis of complex sugar sequences. Genomic structure and transcript analysis have shown the existence of multiple isoforms for most of the sulfotransferases. Many aspects of the heparan sulfate biosynthetic scheme are shared by the structural analog heparin, which is synthesized in mast cells and some other mammalian cells and is several-fold higher degree of polymerization and more extensive modification than heparan sulfate.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 100 条
[1]   Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family [J].
Aikawa, J ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) :2690-2695
[2]   Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase -: Structure and activity of the fourth member, NDST4 [J].
Aikawa, J ;
Grobe, K ;
Tsujimoto, M ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (08) :5876-5882
[3]   Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I -: A seventh member of the human β4-galactosyltransferase gene family [J].
Almeida, R ;
Levery, SB ;
Mandel, U ;
Kresse, H ;
Schwientek, T ;
Bennett, EP ;
Clausen, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26165-26171
[4]   Turnover of heparan sulfate depends on 2-O-sulfation of uronic acids [J].
Bai, XM ;
Bame, KJ ;
Habuchi, H ;
Kimata, K ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23172-23179
[5]   Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I [J].
Bai, XM ;
Wei, G ;
Sinha, A ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13017-13024
[6]   An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation [J].
Bai, XM ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :17711-17717
[7]   Biosynthesis of the linkage region of glycosaminoglycans -: Cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6) [J].
Bai, XM ;
Zhou, DP ;
Brown, JR ;
Crawford, BE ;
Hennet, T ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48189-48195
[8]   Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion [J].
Bellaiche, Y ;
The, I ;
Perrimon, N .
NATURE, 1998, 394 (6688) :85-88
[9]   Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations [J].
Bernard, MA ;
Hogue, DA ;
Cole, WG ;
Sanford, T ;
Snuggs, MB ;
Montufar-Solis, D ;
Duke, PJ ;
Carson, DD ;
Scott, A ;
Van Winkle, WB ;
Hecht, JT .
JOURNAL OF BONE AND MINERAL RESEARCH, 2000, 15 (03) :442-450
[10]   Functions of cell surface heparan sulfate proteoglycans [J].
Bernfield, M ;
Götte, M ;
Park, PW ;
Reizes, O ;
Fitzgerald, ML ;
Lincecum, J ;
Zako, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :729-777