Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review

被引:21
作者
Navid, Qamar [1 ]
Hassan, Ahmed [2 ]
Fardoun, Abbas Ahmad [3 ]
Ramzan, Rashad [4 ]
Alraeesi, Abdulrahman [5 ]
机构
[1] United Arab Emirates Univ, Emirates Ctr Energy & Environm Res, Al Ain 15551, U Arab Emirates
[2] United Arab Emirates Univ, Coll Engn, Dept Architecture Engn, Al Ain 15551, U Arab Emirates
[3] Al Mareef Univ, Dept Elect & Elect Engn, Beirut 1001, Lebanon
[4] Natl Univ Comp & Emerging Sci, Dept Elect Engn, Islamabad 44000, Pakistan
[5] United Arab Emirates Univ, Dept Chem & Petr Engn, Al Ain 15551, U Arab Emirates
关键词
utility-scale power plants; photovoltaic (PV); monitoring; fault diagnostics; PV SYSTEMS; DETECTION ALGORITHM; ARTIFICIAL-INTELLIGENCE; REMOTE SUPERVISION; POINT TRACKING; ENERGY-LOSSES; BIPV SYSTEMS; ARRAY; PERFORMANCE; MODULES;
D O I
10.3390/su13041629
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The worldwide electricity supply network has recently experienced a huge rate of solar photovoltaic penetration. Grid-connected photovoltaic (PV) systems range from smaller custom built-in arrays to larger utility power plants. When the size and share of PV systems in the energy mix increases, the operational complexity and reliability of grid stability also increase. The growing concern about PV plants compared to traditional power plants is the dispersed existence of PV plants with millions of generators (PV panels) spread over kilometers, which increases the possibility of faults occurring and associated risk. As a result, a robust fault diagnosis and mitigation framework remain a key component of PV plants. Various fault monitoring and diagnostic systems are currently being used, defined by calculation of electrical parameters, extracted electrical parameters, artificial intelligence, and thermography. This article explores existing PV fault diagnostic systems in a detailed way and addresses their possible merits and demerits.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 152 条
[41]   Detectable faults on recently installed solar modules in Western Australia [J].
Djordjevic, Sinisa ;
Parlevliet, David ;
Jennings, Philip .
RENEWABLE ENERGY, 2014, 67 :215-221
[42]   Experimental investigation of partial shading scenarios on PV (photovoltaic) modules [J].
Dolara, Alberto ;
Lazaroiu, George Cristian ;
Leva, Sonia ;
Manzolini, Giampaolo .
ENERGY, 2013, 55 :466-475
[43]  
Dotenco Sergiu, 2016, IEEE WINTER C APPL C
[44]   Monitoring and remote failure detection of grid-connected PV systems based on satellite observations [J].
Drews, A. ;
de Keizer, A. C. ;
Beyer, H. G. ;
Lorenz, E. ;
Betcke, J. ;
van Sark, W. G. J. H. M. ;
Heydenreich, W. ;
Wiemken, E. ;
Stettler, S. ;
Toggweiler, P. ;
Bofinger, S. ;
Schneider, M. ;
Heilscher, G. ;
Heinemann, D. .
SOLAR ENERGY, 2007, 81 (04) :548-564
[45]   A comprehensive method for estimating energy losses due to shading of GC-BIPV systems using monitoring data [J].
Drif, M. ;
Mellit, A. ;
Aguilera, J. ;
Perez, P. J. .
SOLAR ENERGY, 2012, 86 (09) :2397-2404
[46]  
Ducange P., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P1341, DOI 10.1109/ISDA.2011.6121846
[47]  
Espinoza-Trejo DR, 2016, IEEE IND ELEC, P2189, DOI 10.1109/IECON.2016.7793421
[48]   Maximum power point analysis for partial shading detection and identification in photovoltaic systems [J].
Fadhel, S. ;
Diallo, D. ;
Delpha, C. ;
Migan, A. ;
Bahri, I ;
Trabelsi, M. ;
Mimouni, M. F. .
ENERGY CONVERSION AND MANAGEMENT, 2020, 224
[49]  
Falvo M. C., 2015, Case Studies in Fire Safety, V3, P1, DOI 10.1016/j.csfs.2014.11.002
[50]   Short-Term Load Forecasting Based on a Semi-Parametric Additive Model [J].
Fan, Shu ;
Hyndman, Rob J. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) :134-141