Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases

被引:32
作者
Atas, Y. Y. [1 ]
Gangardt, D. M. [2 ]
Bouchoule, I. [3 ]
Kheruntsyan, K. V. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[3] Univ Paris Sud 11, CNRS, Inst Opt, Lab Charles Fabry, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
基金
澳大利亚研究理事会;
关键词
DIMENSIONAL BOSE-GASES; IMPENETRABLE BOSONS; ULTRACOLD GASES; SYSTEMS; EQUILIBRIUM; RELAXATION;
D O I
10.1103/PhysRevA.95.043622
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting bosons in one dimension in the Tonks-Girardeau regime of infinitely strong repulsive interactions. Using the Fredholm determinant approach and the Bose-Fermi mapping, we show how the problem can be reduced to a single-particle basis, wherein the finite-temperature effects enter the solution via an effective "dressing" of the single-particle wave functions by the Fermi-Dirac occupation factors. We demonstrate the utility of our approach and its computational efficiency in two nontrivial out-of-equilibrium scenarios: collective breathing-mode oscillations in a harmonic trap and collisional dynamics in the Newton's cradle setting involving real-time evolution in a periodic Bragg potential.
引用
收藏
页数:6
相关论文
共 47 条
[1]  
[Anonymous], 1998, QUANTUM MECH
[2]  
Atas Y. Y., ARXIV161204593
[3]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[4]  
Bornemann F, 2010, MATH COMPUT, V79, P871, DOI 10.1090/S0025-5718-09-02280-7
[5]   Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study [J].
Bouchoule, I. ;
Szigeti, S. S. ;
Davis, M. J. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW A, 2016, 94 (05)
[6]   Fermi-Bose transformation for the time-dependent Lieb-Liniger gas [J].
Buljan, H. ;
Pezer, R. ;
Gasenzer, T. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[7]   Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps [J].
Campbell, A. S. ;
Gangardt, D. M. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW LETTERS, 2015, 114 (12)
[8]   Simple theoretical tools for low dimension Bose gases [J].
Castin, Y .
JOURNAL DE PHYSIQUE IV, 2004, 116 :89-132
[9]   Constructing the Generalized Gibbs Ensemble after a Quantum Quench [J].
Caux, Jean-Sebastien ;
Konik, Robert M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[10]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466