A HYBRID STEEPEST DESCENT METHOD FOR A SPLIT FEASIBILITY PROBLEM IN HILBERT SPACES

被引:0
|
作者
Cheng, Peng [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
关键词
Descent method; Split feasibility problem; Hilbert space; Solution; Equilibrium problem; FIXED-POINT PROBLEMS; STRONG-CONVERGENCE; ALGORITHMS; PROJECTION; EQUILIBRIUM; OPERATORS; MONOTONE; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The propose of this paper is to introduce and investigate a hybrid steepest descent method for solving a split feasibility problem involving two bi-functions. It is proved that the solution of the split feasibility problem is also a unique solution to some strongly monotone variational inequality.
引用
收藏
页码:1813 / 1823
页数:11
相关论文
共 50 条
  • [21] An optimization approach to solving the split feasibility problem in Hilbert spaces
    Simeon Reich
    Truong Minh Tuyen
    Mai Thi Ngoc Ha
    Journal of Global Optimization, 2021, 79 : 837 - 852
  • [22] The split feasibility problem with multiple output sets in Hilbert spaces
    Reich, Simeon
    Minh Tuyen Truong
    Thi Ngoc Ha Mai
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2335 - 2353
  • [23] The split feasibility problem with multiple output sets in Hilbert spaces
    Simeon Reich
    Minh Tuyen Truong
    Thi Ngoc Ha Mai
    Optimization Letters, 2020, 14 : 2335 - 2353
  • [24] Inertial relaxedCQalgorithms for solving a split feasibility problem in Hilbert spaces
    Sahu, D. R.
    Cho, Y. J.
    Dong, Q. L.
    Kashyap, M. R.
    Li, X. H.
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1075 - 1095
  • [25] Iterative algorithms for solving the split feasibility problem in Hilbert spaces
    Zhao, Jing
    Zong, Haili
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [26] Convergence of hybrid steepest descent method for variational inequalities in Banach spaces
    Chidume, C. E.
    Chidume, C. O.
    Ali, Bashir
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9499 - 9507
  • [27] Hybrid Steepest Descent Method of One-parameter Nonexpansive Cosine Families for Variational Inequality Problems in Hilbert Spaces
    Nimana, Nimit
    Niyom, Somboon
    Petrot, Narin
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (03): : 673 - 686
  • [28] A ∂¯ -Steepest Descent Method for Oscillatory Riemann–Hilbert Problems
    Wang, Fudong
    Ma, Wen-Xiu
    Journal of Nonlinear Science, 2022, 32 (01)
  • [29] Multi-step hybrid steepest-descent methods for split feasibility problems with hierarchical variational inequality problem constraints
    Ceng, L. C.
    Liou, Y. C.
    Sahu, D. R.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4148 - 4166
  • [30] A Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces
    D. R. Sahu
    N. C. Wong
    J. C. Yao
    Fixed Point Theory and Applications, 2011