(K, L)-eigenvectors in max-min algebra

被引:1
作者
Gavalec, Martin [1 ]
Nemcova, Zuzana [1 ]
Sergeev, Sergei [2 ]
机构
[1] Univ Hradec Kralove, Fac Informat & Management, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Max-min; Fuzzy algebra; Eigenvector; EIGEN FUZZY-SETS; EIGENVECTORS; SYSTEMS;
D O I
10.1016/j.fss.2020.07.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Using the concept of (K, L)-eigenvector, we investigate the structure of the max-min eigenspace associated with a given eigenvalue of a matrix in the max-min algebra (also known as fuzzy algebra). In our approach, the max-min eigenspace is split into several regions according to the order relations between the eigenvalue and the components of x. The resulting theory of (K, L)eigenvectors, being based on the fundamental results of Gondran and Minoux, allows to describe the whole max-min eigenspace explicitly and in more detail . (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 27 条
[1]  
[Anonymous], 1992, Synchronization and Linearity
[2]  
Butkovic P, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84996-299-5
[3]   Z-matrix equations in max-algebra, nonnegative linear algebra and other semirings [J].
Butkovic, Peter ;
Schneider, Hans ;
Sergeev, Sergei .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (10) :1191-1210
[4]  
Carre B.A, 1971, IMA J APPL MATH, V7
[5]   EIGENVECTORS IN BOTTLENECK ALGEBRA [J].
CECHLAROVA, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 175 :63-73
[6]   RESIDUATION IN FUZZY ALGEBRA AND SOME APPLICATIONS [J].
CUNINGHAMEGREEN, RA ;
CECHLAROVA, K .
FUZZY SETS AND SYSTEMS, 1995, 71 (02) :227-239
[7]   A note on systems with max-min and max-product constraints [J].
Elbassioni, Khaled A. .
FUZZY SETS AND SYSTEMS, 2008, 159 (17) :2272-2277
[8]   Strong tolerance of interval eigenvectors in fuzzy algebra [J].
Gavalec, M. ;
Plavka, J. ;
Ponce, D. .
FUZZY SETS AND SYSTEMS, 2019, 369 :145-156
[9]   Monotone eigenspace structure in max-min algebra [J].
Gavalec, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 345 :149-167
[10]   Steady states of max-Lukasiewicz fuzzy systems [J].
Gavalec, Martin ;
Nemcova, Zuzana .
FUZZY SETS AND SYSTEMS, 2017, 325 :58-68