The splitting problem for coalgebras: A direct approach

被引:4
作者
Iovanov, Miodrag-Cristian [1 ]
机构
[1] Univ Bucharest, Fac Math, RO-010014 Bucharest, Romania
关键词
torsion theory; splitting; coalgebra;
D O I
10.1007/s10485-006-9050-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we give a new and elementary proof of a result of Nastasescu and Torrecillas (J. Algebra, 281: 144 - 149, 2004) stating that a coalgebra C is finite dimensional if and only if the rational part of any right module M over the dual algebra C* is a direct summand in M ( the splitting problem for coalgebras).
引用
收藏
页码:599 / 604
页数:6
相关论文
共 13 条
[1]  
Anderson D., 1974, GRADUATE TEXTS MATH
[2]  
Dascaescu S, 2001, HOPF ALGEBRAS INTRO, V235
[3]  
DOI Y, 1981, J MATH SOC JPN, V33, P31, DOI 10.2969/jmsj/03310031
[4]  
Jacobson N., 1964, C PUBL AM MATH SOC, V37
[5]   MODULES OVER DEDEKIND RINGS AND VALUATION RINGS [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :327-340
[6]  
KAPLANSKY I, 1960, J INDIAN MATH SOC, V24, P279
[7]  
Kaplansky I., 1954, Infinite abelian groups
[8]   The splitting problem for coalgebras [J].
Nastasescu, C ;
Torrecillas, B .
JOURNAL OF ALGEBRA, 2004, 281 (01) :144-149
[9]  
NASTASESCU C, 1975, RINGS MODULES CATEGO
[10]  
ROTMAN J, 1960, AN ACAD BRAS CIENC, V32, P193