A formula for the optimal cost in the general discrete-time LEQG problem

被引:1
|
作者
Shaiju, A. J. [1 ]
Petersen, I. R. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Univ New S Wales, Australian Def Force Acad, Sch Informat Technol & Elect Engn, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会;
关键词
Linear optimal control; Discrete-time systems; Optimal estimation; Quadratic performance indices; Dynamic output feedback control; Dynamic programming; STOCHASTIC LINEAR-SYSTEMS;
D O I
10.1016/j.automatica.2009.06.029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is aimed at deriving an explicit formula for the optimal cost for discrete-time linear exponential-of-quadratic Gaussian (LEQG) control problems. We make direct calculations for the general case with cross terms in the cost and noise covariance matrices using an information-state approach (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2419 / 2426
页数:8
相关论文
共 50 条
  • [1] Optimal Retention of the Trajectories of a Discrete-Time Stochastic System in a Tube: One Problem Statement
    Tarasov, A. N.
    Azanov, V. M.
    Kibzun, A. I.
    AUTOMATION AND REMOTE CONTROL, 2023, 84 (01) : 42 - 55
  • [2] Optimal guaranteed cost control of discrete-time uncertain nonlinear systems
    Savkin, AV
    Petersen, IR
    SYSTEM STRUCTURE AND CONTROL 1995, 1996, : 211 - 216
  • [3] Optimal Retention of the Trajectories of a Discrete-Time Stochastic System in a Tube: One Problem Statement
    A. N. Tarasov
    V. M. Azanov
    A. I. Kibzun
    Automation and Remote Control, 2023, 84 : 42 - 55
  • [4] Optimal guaranteed cost filtering for uncertain discrete-time linear systems
    Petersen, IR
    McFarlane, DC
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1996, 6 (04) : 267 - 280
  • [5] Partially observed optimal stopping problem for discrete-time Markov processes
    Benoîte de Saporta
    François Dufour
    Christophe Nivot
    4OR, 2017, 15 : 277 - 302
  • [6] Partially observed optimal stopping problem for discrete-time Markov processes
    de Saporta, Benoite
    Dufour, Francois
    Nivot, Christophe
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2017, 15 (03): : 277 - 302
  • [7] Generalizing the Letov formula for the discrete-time case
    Maide Bucolo
    Arturo Buscarino
    Luigi Fortuna
    Salvina Gagliano
    International Journal of Dynamics and Control, 2023, 11 : 94 - 100
  • [8] Generalizing the Letov formula for the discrete-time case
    Bucolo, Maide
    Buscarino, Arturo
    Fortuna, Luigi
    Gagliano, Salvina
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (01) : 94 - 100
  • [9] A discrete-time optimal execution problem with market prices subject to random environments
    Jasso-Fuentes, Hector
    Pacheco, Carlos G.
    Salgado-Suarez, Gladys D.
    TOP, 2023, 31 (03) : 562 - 583
  • [10] THE MITRA-WAN FORESTRY MODEL: A DISCRETE-TIME OPTIMAL CONTROL PROBLEM
    Laura-Guarachi, Leonardo R.
    Hernandez-Lerma, Onesimo
    NATURAL RESOURCE MODELING, 2015, 28 (02) : 152 - 168