Propagation of bursting oscillations

被引:15
作者
Ambrosio, Benjamin [1 ]
Francoise, Jean-Pierre [1 ]
机构
[1] Univ Paris 06, Lab JL Lions, UMR 7598, CNRS, Paris 6, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 367卷 / 1908期
关键词
attractors; bursting; oscillations; excitable media; reaction diffusion; FITZHUGH-NAGUMO EQUATIONS; EXCITATION;
D O I
10.1098/rsta.2009.0143
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate a system of partial differential equations of reaction-diffusion type which displays propagation of bursting oscillations. This system represents the time evolution of an assembly of cells constituted by a small nucleus of bursting cells near the origin immersed in the middle of excitable cells. We show that this system displays a global attractor in an appropriated functional space. Numerical simulations show the existence in this attractor of recurrent solutions which are waves propagating from the central source. The propagation seems possible if the excitability of the neighbouring cells is above some threshold.
引用
收藏
页码:4863 / 4875
页数:13
相关论文
共 13 条
[1]  
AMBROSIO B, 2009, THESIS U P M CURIE P
[2]   Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans [J].
Aslanidi, OV ;
Mornev, OA ;
Skyggebjerg, O ;
Arkhammar, P ;
Thastrup, O ;
Sorensen, MP ;
Christiansen, PL ;
Conradsen, K ;
Scott, AC .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1195-1209
[3]   NONLINEAR DYNAMICS OF CARDIAC EXCITATION AND IMPULSE PROPAGATION [J].
CHIALVO, DR ;
JALIFE, J .
NATURE, 1987, 330 (6150) :749-752
[4]  
FRANCOISE JP, 2005, COLLECTION MATH APPL, V46
[5]  
HARAUX A, 1991, COLLECTION RECHERCHE, V17
[6]  
Keener J., 1998, Mathematical physiology
[8]   CHAOTIC ACTIVITY IN A MATHEMATICAL-MODEL OF THE VAGALLY DRIVEN SINOATRIAL NODE [J].
MICHAELS, DC ;
CHIALVO, DR ;
MATYAS, EP ;
JALIFE, J .
CIRCULATION RESEARCH, 1989, 65 (05) :1350-1360
[9]  
Scott A., 1999, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Vvol 1
[10]  
Temam R., 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, DOI 10.1007/978-1-4684-0313-8