Lung cancer prediction by Deep Learning to identify benign lung nodules

被引:94
作者
Heuvelmans, Marjolein A. [1 ,2 ]
van Ooijen, Peter M. A. [3 ]
Ather, Sarim [4 ]
Silva, Carlos Francisco [5 ,7 ,14 ]
Han, Daiwei [6 ]
Heussel, Claus Peter [5 ,7 ,14 ]
Hickes, William [8 ]
Kauczor, Hans-Ulrich [5 ,7 ,14 ]
Novotny, Petr [9 ,10 ]
Peschl, Heiko [11 ]
Rook, Mieneke [6 ,12 ]
Rubtsov, Roman [5 ,7 ,14 ]
von Stackelberg, Oyunbileg [5 ,7 ,14 ]
Tsakok, Maria T. [11 ]
Arteta, Carlos [9 ]
Declerck, Jerome [9 ]
Kadir, Timor [9 ]
Pickup, Lyndsey [9 ]
Gleeson, Fergus [8 ]
Oudkerk, Matthijs [13 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen Groningen, Dept Epidemiol, Groningen, Netherlands
[2] Med Spectrum Twente, Dept Pulm Med, Enschede, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen Groningen, Dept Radiat Oncol, Groningen, Netherlands
[4] Oxford Univ Hosp NHS Fdn Trust, Churchill Hosp, Dept Radiol, Oxford, England
[5] Univ Hosp Heidelberg, Diagnost & Intervent Radiol, Heidelberg, Germany
[6] Univ Groningen, Univ Med Ctr Groningen Groningen, Dept Radiol, Groningen, Netherlands
[7] German Lung Res Ctr, Translat Lung Res Ctr, Heidelberg, Germany
[8] Oxford Univ Hosp NHS Fdn Trust, Oxford, England
[9] Optellum Ltd, Oxford, England
[10] Univ Leicester, Coll Life Sci, Dept Resp Sci, Leicester, Leics, England
[11] Oxford Univ Hosp NHS Fdn Trust, Dept Radiol, Oxford, England
[12] Martini Hosp Groningen, Dept Radiol, Groningen, Netherlands
[13] Univ Groningen, Fac Med Sci, Groningen, Netherlands
[14] Heidelberg Univ Hosp, Dept Diagnost & Intervent Radiol Nucl Med, Thoraxklin, Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
Lung cancer; Screening; Pulmonary nodule; Deep learning;
D O I
10.1016/j.lungcan.2021.01.027
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Deep Learning has been proposed as promising tool to classify malignant nodules. Our aim was to retrospectively validate our Lung Cancer Prediction Convolutional Neural Network (LCP-CNN), which was trained on US screening data, on an independent dataset of indeterminate nodules in an European multicentre trial, to rule out benign nodules maintaining a high lung cancer sensitivity. Methods: The LCP-CNN has been trained to generate a malignancy score for each nodule using CT data from the U.S. National Lung Screening Trial (NLST), and validated on CT scans containing 2106 nodules (205 lung cancers) detected in patients from from the Early Lung Cancer Diagnosis Using Artificial Intelligence and Big Data (LUCINDA) study, recruited from three tertiary referral centers in the UK, Germany and Netherlands. We pre-defined a benign nodule rule-out test, to identify benign nodules whilst maintaining a high sensitivity, by calculating thresholds on the malignancy score that achieve at least 99 % sensitivity on the NLST data. Overall performance per validation site was evaluated using Area-Under-the-ROC-Curve analysis (AUC). Results: The overall AUC across the European centers was 94.5 % (95 %CI 92.6-96.1). With a high sensitivity of 99.0 %, malignancy could be ruled out in 22.1 % of the nodules, enabling 18.5 % of the patients to avoid followup scans. The two false-negative results both represented small typical carcinoids. Conclusion: The LCP-CNN, trained on participants with lung nodules from the US NLST dataset, showed excellent performance on identification of benign lung nodules in a multi-center external dataset, ruling out malignancy with high accuracy in about one fifth of the patients with 5-15 mm nodules.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 10 条
[1]  
American College of Radiology, 2014, LUNG SCREEN REP DAT
[2]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[3]   External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules [J].
Baldwin, David R. ;
Gustafson, Jennifer ;
Pickup, Lyndsey ;
Arteta, Carlos ;
Novotny, Petr ;
Declerck, Jerome ;
Kadir, Timor ;
Figueiras, Catarina ;
Sterba, Albert ;
Exell, Alan ;
Potesil, Vaclav ;
Holland, Paul ;
Spence, Hazel ;
Clubley, Alison ;
O'Dowd, Emma ;
Clark, Matthew ;
Ashford-Turner, Victoria ;
Callister, Matthew E. J. ;
Gleeson, Fergus, V .
THORAX, 2020, 75 (04) :306-312
[4]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7
[5]   Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecifi ed analysis of data from the NELSON trial of low-dose CT screening [J].
Horeweg, Nanda ;
van Rosmalen, Joost ;
Heuvelmans, Marjolein A. ;
van der Aalst, Carlijn M. ;
Vliegenthart, Rozemarijn ;
Scholten, Ernst Th ;
ten Haaf, Kevin ;
Nackaerts, Kristiaan ;
Lammers, Jan-Willem J. ;
Weenink, Carla ;
Groen, Harry J. ;
van Ooijen, Peter ;
de Jong, Pim A. ;
de Bock, Geertruida H. ;
Mali, Willem ;
de Koning, Harry J. ;
Oudkerk, Matthijs .
LANCET ONCOLOGY, 2014, 15 (12) :1332-1341
[6]   Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017 [J].
MacMahon, Heber ;
Naidich, David P. ;
Goo, Jin Mo ;
Lee, Kyung Soo ;
Leung, Ann N. C. ;
Mayo, John R. ;
Mehta, Atul C. ;
Ohno, Yoshiharu ;
Powell, Charles A. ;
Prokop, Mathias ;
Rubin, Geoffrey D. ;
Schaefer-Prokop, Cornelia M. ;
Travis, William D. ;
Van Schil, Paul E. ;
Bankier, Alexander A. .
RADIOLOGY, 2017, 284 (01) :228-243
[7]   Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules [J].
Massion, Pierre P. ;
Antic, Sanja ;
Ather, Sarim ;
Arteta, Carlos ;
Brabec, Jan ;
Chen, Heidi ;
Declerck, Jerome ;
Dufek, David ;
Hickes, William ;
Kadir, Timor ;
Kunst, Jonas ;
Landman, Bennett A. ;
Munden, Reginald F. ;
Novotny, Petr ;
Peschl, Heiko ;
Pickup, Lyndsey C. ;
Santos, Catarina ;
Smith, Gary T. ;
Talwar, Ambika ;
Gleeson, Fergus .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 202 (02) :241-249
[8]   Advanced typical and atypical carcinoid tumours of the lung: management recommendations [J].
Melosky, B. .
CURRENT ONCOLOGY, 2018, 25 :S86-S93
[9]  
Oudkerk M, 2017, LANCET ONCOL, V18, pE754, DOI [10.1016/s1470-2045(17)30861-6, 10.1016/S1470-2045(17)30861-6]
[10]   Lung Cancer Prediction Using Deep Learning Software: Validation on Independent Multi-Centre Data [J].
Peschl, H. ;
Han, D. ;
Van Ooijen, P. ;
Oudkerk, M. ;
Dorrius, M. ;
Rook, M. ;
Vliegenthart, R. ;
Heusse, C. P. ;
Batora, N. ;
Kauczor, H. ;
Da Silva, C. ;
Von Stackelberg, O. ;
Rubtsov, R. ;
Wielputz, M. ;
Ather, S. ;
Tsakok, M. ;
Arteta, C. ;
Pickup, L. ;
Hussain, S. ;
Hickes, W. ;
Novotny, P. ;
Santos, C. ;
Fay, E. ;
Declerck, J. ;
Potesi, V. ;
Kadir, T. ;
Gleeson, F. .
JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) :S428-S428