Modeling lamellar disruption within the aortic wall using a particle-based approach

被引:21
作者
Ahmadzadeh, H. [1 ]
Rausch, M. K. [2 ]
Humphrey, J. D. [1 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[2] Univ Texas Austin, Dept Biomed Engn, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
关键词
THORACIC AORTA; DISSECTION PROPERTIES; EXTRACELLULAR-MATRIX; ANEURYSMS; MEDIA; FIELD; UNIT; INSIGHTS; FAILURE; DAMAGE;
D O I
10.1038/s41598-019-51558-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aortic dissections associate with medial degeneration, thus suggesting a need to understand better the biophysical interactions between the cells and matrix that constitute the middle layer of the aortic wall. Here, we use a recently extended "Smoothed Particle Hydrodynamics" formulation to examine potential mechanisms of aortic delamination arising from smooth muscle cell (SMC) dysfunction or apoptosis, degradation of or damage to elastic fibers, and pooling of glycosaminoglycans (GAGs), with associated losses of medial collagen in the region of the GAGs. First, we develop a baseline multi-layered model for the healthy aorta that delineates medial elastic lamellae and intra-lamellar constituents. Next, we examine stress fields resulting from the disruption of individual elastic lamellae, lost SMC contractility, and GAG production within an intra-lamellar space, focusing on the radial transferal of loading rather than on stresses at the tip of the delaminated tissue. Results suggest that local disruptions of elastic lamellae transfer excessive loads to nearby intra-lamellar constituents, which increases cellular vulnerability to dysfunction or death. Similarly, lost SMC function and accumulations of GAGs increase mechanical stress on nearby elastic lamellae, thereby increasing the chance of disruption. Overall these results suggest a positive feedback loop between lamellar disruption and cellular dropout with GAG production and lost medial collagen that is more pronounced at higher distending pressures. Independent of the initiating event, this feedback loop can catastrophically propagate intramural delamination.
引用
收藏
页数:17
相关论文
共 58 条
[1]   Particle-based computational modelling of arterial disease [J].
Ahmadzadeh, H. ;
Rausch, M. K. ;
Humphrey, J. D. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (149)
[2]   Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta [J].
Azeloglu, Evren U. ;
Albro, Michael B. ;
Thimmappa, Vikrum A. ;
Ateshian, Gerard A. ;
Costa, Kevin D. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 294 (03) :H1197-H1205
[3]   The Role of Imaging in Aortic Dissection and Related Syndromes [J].
Baliga, Ragavendra. R. ;
Nienaber, Christoph A. ;
Bossone, Eduardo ;
Oh, Jae K. ;
Isselbacher, Eric M. ;
Sechtem, Udo ;
Fattori, Rossella ;
Raman, Subha V. ;
Eagle, Kim A. .
JACC-CARDIOVASCULAR IMAGING, 2014, 7 (04) :406-424
[4]   Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms [J].
Bellini, C. ;
Bersi, M. R. ;
Caulk, A. W. ;
Ferruzzi, J. ;
Milewicz, D. M. ;
Ramirez, F. ;
Rifkin, D. B. ;
Tellides, G. ;
Yanagisawa, H. ;
Humphrey, J. D. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (130)
[5]   A Microstructurally Motivated Model of Arterial Wall Mechanics with Mechanobiological Implications [J].
Bellini, C. ;
Ferruzzi, J. ;
Roccabianca, S. ;
Di Martino, E. S. ;
Humphrey, J. D. .
ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (03) :488-502
[6]   Myh11R247C/R247C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity [J].
Bellini, Chiara ;
Wang, Shanzhi ;
Milewicz, Dianna M. ;
Humphrey, Jay D. .
JOURNAL OF BIOMECHANICS, 2015, 48 (01) :113-121
[7]   Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics [J].
Bersi, Matthew R. ;
Bellini, Chiara ;
Humphrey, Jay D. ;
Avril, Stephane .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2019, 18 (01) :203-218
[8]   Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension [J].
Bersi, Matthew R. ;
Bellini, Chiara ;
Wu, Jing ;
Montaniel, Kim R. C. ;
Harrison, David G. ;
Humphrey, Jay D. .
HYPERTENSION, 2016, 67 (05) :890-896
[9]   Aortic dissecting aneurysms-Histopathological findings [J].
Bode-Jaenisch, S. ;
Schmidt, A. ;
Guenther, D. ;
Stuhrmann, M. ;
Fieguth, A. .
FORENSIC SCIENCE INTERNATIONAL, 2012, 214 (1-3) :13-17
[10]   Nonlinear model of human descending thoracic aortic segments with residual stresses [J].
Breslavsky, Ivan ;
Amabili, Marco .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2018, 17 (06) :1839-1855