Semi-classical limit of large fermionic systems at positive temperature

被引:4
|
作者
Lewin, Mathieu [1 ,2 ]
Madsen, Peter S. [3 ]
Triay, Arnaud [2 ]
机构
[1] PSL Univ, Paris Dauphine Univ, CNRS, F-75016 Paris, France
[2] PSL Univ, Paris Dauphine Univ, CEPEMADE, F-75016 Paris, France
[3] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
基金
欧洲研究理事会;
关键词
HARTREE-FOCK THEORY; MEAN-FIELD; ASYMPTOTIC EXACTNESS; STATISTICAL-THEORY; EQUATION; DYNAMICS; DERIVATION; COLLAPSE; ENERGY; STATE;
D O I
10.1063/1.5094397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a system of N interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as 1/N and with an effective semiclassical parameter PLANCK CONSTANT OVER TWO PI = N-1/d where d is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] The semi-classical limit of large fermionic systems
    Fournais, Soren
    Lewin, Mathieu
    Solovej, Jan Philip
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [2] Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields
    Fournais, Soren
    Madsen, Peter S.
    ANNALES HENRI POINCARE, 2020, 21 (05): : 1401 - 1449
  • [3] Semi-classical Limit for the Quantum Zakharov System
    Fang, Yung-Fu
    Kuo, Hung-Wen
    Shih, Hsi-Wei
    Wang, Kuan-Hsiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 925 - 949
  • [4] Transient Anisotropy in Degenerate Systems: a Semi-Classical Approach
    Schalk, Oliver
    Unterreiner, Andreas-Neil
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2011, 225 (9-10): : 927 - 938
  • [5] Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation
    Choi, Woocheol
    Hong, Younghun
    Seok, Jinmyoung
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (02) : 783 - 829
  • [6] A healthier semi-classical dynamics
    Layton, Isaac
    Oppenheim, Jonathan
    Weller-Davies, Zachary
    QUANTUM, 2024, 8
  • [7] Semi-classical approximation description of static properties of nuclei
    Shlomo, S.
    Sanzhur, A., I
    MODERN PHYSICS LETTERS A, 2021, 36 (09)
  • [8] On the Semi-classical Brownian Bridge Measure
    Li, Xue-Mei
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [9] Exchange potentials for semi-classical electrons
    Herzfeld, Judith
    Ekesan, Solen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (44) : 30748 - 30753
  • [10] Concentration of semi-classical solutions to the Chern-Simons-Schrodinger systems
    Wan, Youyan
    Tan, Jinggang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03):