FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES

被引:18
作者
Gunawan, H. [1 ]
Sawano, Y. [2 ]
Sihwaningrum, I. [1 ,3 ]
机构
[1] Bandung Inst Technol, Dept Math, Bandung 40132, Indonesia
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
[3] Gen Soedirman Univ, Dept Math, Purwokerto 53122, Indonesia
基金
日本学术振兴会;
关键词
fractional integral operators; generalized Morrey spaces; nondoubling measures; Olsen's inequality; MORREY SPACES;
D O I
10.1017/S0004972709000343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss here the boundedness of the fractional integral operator I-alpha and its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness of I-alpha, we employ the boundedness of the so-called maximal fractional integral operator I-alpha,I-kappa*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 20 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], 2001, Sci. Math. Jpn
[3]  
Davies E. B., 1989, CAMBRIDGE TRACTS MAT, V92
[4]  
Eridani A., 2004, SCI MATH JPN, V60, P539
[5]   Boundedness properties of fractional integral operators associated to non-doubling measures [J].
García-Cuerva, J ;
Gatto, AE .
STUDIA MATHEMATICA, 2004, 162 (03) :245-261
[6]  
Gunawan H, 2009, KYUNGPOOK MATH J, V49, P31
[7]   Some properties of fractional integrals I [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1928, 27 :565-606
[8]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439
[9]   Boundedness of integral operators on generalized Morrey spaces and its application to Schrodinger operators [J].
Kurata, K ;
Nishigaki, S ;
Sugano, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1125-1134
[10]  
Nakai E., 2001, Sci. Math. Jpn., V54, P473