A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

被引:1
作者
Vignat, C. [1 ]
Lamberti, P. W. [2 ,3 ]
机构
[1] Univ Marne la Vallee, IGM, Marne La Vallee, France
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
entropy; ground states; harmonic oscillators; polynomials; quantum theory; wave functions;
D O I
10.1063/1.3227659
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Carin approximate to ena, [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positive curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.
引用
收藏
页数:10
相关论文
共 8 条
[1]  
Aldaya V., 1996, Reports on Mathematical Physics, V37, P387, DOI 10.1016/0034-4877(96)84075-4
[2]   THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - GENERALIZED HERMITE-POLYNOMIALS [J].
ALDAYA, V ;
BISQUERT, J ;
NAVARROSALAS, J .
PHYSICS LETTERS A, 1991, 156 (7-8) :381-385
[3]   A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour [J].
Carinena, Jose F. ;
Ranada, Manuel F. ;
Santander, Mariano .
ANNALS OF PHYSICS, 2007, 322 (02) :434-459
[4]   DYNAMICAL SYMMETRIES IN A SPHERICAL GEOMETRY-I [J].
HIGGS, PW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (03) :309-323
[5]   Relativistic orthogonal polynomials are Jacobi polynomials [J].
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (12) :3199-3202
[6]   THE RELATIVISTIC HERMITE POLYNOMIAL IS A GEGENBAUER POLYNOMIAL [J].
NAGEL, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1549-1554
[7]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[8]   THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - SPECTRUM OF ZEROS OF ITS WAVE-FUNCTIONS [J].
ZARZO, A ;
MARTINEZ, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2926-2935