Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines

被引:48
作者
Alfagih, Iman M. [1 ]
Aldosari, Basmah [1 ]
AlQuadeib, Bushra [1 ]
Almurshedi, Alanood [1 ]
Alfagih, Mariyam M. [2 ]
机构
[1] King Saud Univ, Dept Pharmaceut, Coll Pharm, Riyadh 11671, Saudi Arabia
[2] Aalfaisal Univ, Dept Pharmaceut Sci, Coll Pharm, Riyadh 11533, Saudi Arabia
关键词
mRNA; adjuvant; vaccine; nanoparticles; nanodelivery systems; lipids; polymers;
D O I
10.3390/pharmaceutics13010045
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 155 条
[21]   Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin [J].
Brazzoli, Michela ;
Magini, Diletta ;
Bonci, Alessandra ;
Buccato, Scilla ;
Giovani, Cinzia ;
Kratzer, Roland ;
Zurli, Vanessa ;
Mangiavacchi, Simona ;
Casini, Daniele ;
Brito, Luis M. ;
De Gregorio, Ennio ;
Mason, Peter W. ;
Ulmer, Jeffrey B. ;
Geall, Andrew J. ;
Bertholet, Sylvie .
JOURNAL OF VIROLOGY, 2016, 90 (01) :332-344
[22]   A Cationic Nanoemulsion for the Delivery of Next-generation RNA Vaccines [J].
Brito, Luis A. ;
Chan, Michelle ;
Shaw, Christine A. ;
Hekele, Armin ;
Carsillo, Thomas ;
Schaefer, Mary ;
Archer, Jacob ;
Seubert, Anja ;
Otten, Gillis R. ;
Beard, Clayton W. ;
Dey, Antu K. ;
Lilja, Anders ;
Valiante, Nicholas M. ;
Mason, Peter W. ;
Mandl, Christian W. ;
Barnett, Susan W. ;
Dormitzer, Philip R. ;
Ulmer, Jeffrey B. ;
Singh, Manmohan ;
O'Hagan, Derek T. ;
Geall, Andrew J. .
MOLECULAR THERAPY, 2014, 22 (12) :2118-2129
[23]   Liposomal Formulations in Clinical Use: An Updated Review [J].
Bulbake, Upendra ;
Doppalapudi, Sindhu ;
Kommineni, Nagavendra ;
Khan, Wahid .
PHARMACEUTICS, 2017, 9 (02)
[24]   Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines [J].
Carstens, Myrra G. ;
Camps, Marcel G. M. ;
Henriksen-Lacey, Malou ;
Franken, Kees ;
Ottenhoff, Tom H. M. ;
Perrie, Yvonne ;
Bouwstra, Joke A. ;
Ossendorp, Ferry ;
Jiskoot, Wim .
VACCINE, 2011, 29 (29-30) :4761-4770
[25]   An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+T cell responses in a mouse model [J].
Chahal, Jasdave S. ;
Fang, Tao ;
Woodham, Andrew W. ;
Khan, Omar F. ;
Ling, Jingjing ;
Anderson, Daniel G. ;
Ploegh, Hidde L. .
SCIENTIFIC REPORTS, 2017, 7
[26]   Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose [J].
Chahal, Jasdave S. ;
Khan, Omar F. ;
Cooper, Christopher L. ;
McPartlan, Justine S. ;
Tsosie, Jonathan K. ;
Tilley, Lucas D. ;
Sidik, Saima M. ;
Lourido, Sebastian ;
Langer, Robert ;
Bavari, Sina ;
Ploegh, Hidde L. ;
Anderson, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (29) :E4133-E4142
[27]   Innate immune responses triggered by nucleic acids inspire the design of immunomodulatory nucleic acid nanoparticles (NANPs) [J].
Chandler, Morgan ;
Johnson, Morgan Brittany ;
Panigaj, Martin ;
Afonin, Kirill A. .
CURRENT OPINION IN BIOTECHNOLOGY, 2020, 63 :8-15
[28]   Expanding antigen-specific regulatory networks to treat autoimmunity [J].
Clemente-Casares, Xavier ;
Blanco, Jesus ;
Ambalavanan, Poornima ;
Yamanouchi, Jun ;
Singha, Santiswarup ;
Fandos, Cesar ;
Tsai, Sue ;
Wang, Jinguo ;
Garabatos, Nahir ;
Izquierdo, Cristina ;
Agrawal, Smriti ;
Keough, Michael B. ;
Yong, V. Wee ;
James, Eddie ;
Moore, Anna ;
Yang, Yang ;
Stratmann, Thomas ;
Serra, Pau ;
Santamaria, Pere .
NATURE, 2016, 530 (7591) :434-+
[29]   Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles [J].
Colombo, Stefano ;
Cun, Dongmei ;
Remaut, Katrien ;
Bunker, Matt ;
Zhang, Jianxin ;
Martin-Bertelsen, Birte ;
Yaghmur, Anan ;
Braeckmans, Kevin ;
Nielsen, Hanne M. ;
Foged, Camilla .
JOURNAL OF CONTROLLED RELEASE, 2015, 201 :22-31
[30]   Nucleic acids presenting polymer nanomaterials as vaccine adjuvants [J].
Comberlato, Alice ;
Paloja, Kaltrina ;
Bastings, Maartje M. C. .
JOURNAL OF MATERIALS CHEMISTRY B, 2019, 7 (41) :6321-6346