Hydroxyl induced edge magnetism and metallicity in armchair MoS2 nanoribbons

被引:5
作者
Cheng, Xue-Mei [1 ,2 ]
Wang, Xue-Feng [1 ,2 ,3 ]
Liu, Yu-Sheng [4 ,5 ]
Dong, Yao-Jun [1 ,2 ]
Xu, Long [1 ,2 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China
[2] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Key Lab Terahertz Solid State Technol, 865 Changning Rd, Shanghai 200050, Peoples R China
[4] Changshu Inst Technol, Coll Phys & Engn, Changshu 215500, Peoples R China
[5] Jiangsu Lab Adv Funct Mat, Changshu 215500, Peoples R China
基金
中国国家自然科学基金;
关键词
armchair MoS2 nanoribbon; htydroxyl group; edge passivation; magnetism; metallicity;
D O I
10.1088/0022-3727/49/11/115303
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on ab initio density functional theory, we demonstrate systematically how nonmagnetic semiconductor armchair MoS2 nanoribbons (AMoS(2)NRs) become magnetic or/and metallic when being edge-passivated by OH groups. Both the Mo and S edge atoms of an AMoS(2)NR can adsorb OH groups but an S atom can catch one OH group only when each of its neighbor Mo atoms has already been passivated by two. The AMoS(2)NR becomes edge magnetic in low passivation density and edge conductive in high density. In the case of uniform edge passivation, one or both of the edges usually become metallic and nonmagnetic if the number i of OH groups per primitive cell satisfies 1 <= i < 8. In case i < 1 a non-passivated edge Mo atom may be spin polarized if its neighbor Mo atom has adsorbed one OH group and the nanoribbon becomes magnetic semiconductor. For i = 8 the nanoribbon become nonmagnetic semiconductor again.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Functionalization of Single-Layer MoS2 Honeycomb Structures [J].
Ataca, C. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13303-13311
[2]   Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects [J].
Ataca, C. ;
Sahin, H. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) :3934-3941
[3]   Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials [J].
Bernardi, Marco ;
Palummo, Maurizia ;
Grossman, Jeffrey C. .
NANO LETTERS, 2013, 13 (08) :3664-3670
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Tuning the Electronic and Chemical Properties of Monolayer MoS2 Adsorbed on Transition Metal Substrates [J].
Chen, Wei ;
Santos, Elton J. G. ;
Zhu, Wenguang ;
Kaxiras, Efthimios ;
Zhang, Zhenyu .
NANO LETTERS, 2013, 13 (02) :509-514
[6]   Possible doping strategies for MoS2 monolayers: An ab initio study [J].
Dolui, Kapildeb ;
Rungger, Ivan ;
Das Pemmaraju, Chaitanya ;
Sanvito, Stefano .
PHYSICAL REVIEW B, 2013, 88 (07)
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]   MoS2 nanoribbons as promising thermoelectric materials [J].
Fan, D. D. ;
Liu, H. J. ;
Cheng, L. ;
Jiang, P. H. ;
Shi, J. ;
Tang, X. F. .
APPLIED PHYSICS LETTERS, 2014, 105 (13)
[9]   Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions [J].
Fontana, Marcio ;
Deppe, Tristan ;
Boyd, Anthony K. ;
Rinzan, Mohamed ;
Liu, Amy Y. ;
Paranjape, Makarand ;
Barbara, Paola .
SCIENTIFIC REPORTS, 2013, 3
[10]   Modeling of graphene nanoribbon devices [J].
Guo, Jing .
NANOSCALE, 2012, 4 (18) :5538-5548