On efficient computation of multidimensional oscillatory integrals with local Fourier bases

被引:4
作者
Averbuch, A [1 ]
Braverman, E
Israeli, M
Coifman, R
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
multidimensional oscillatory integrals; local Fourier basis; sparse representations;
D O I
10.1016/S0362-546X(01)00466-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integral integral (L)(0) integral (L)(0) e(iv phi (x,y,s,t)) f(s,t) ds dt with a highly oscillatory kernel (large v) is represented using local Fourier basis. The representation of the oscillatory kernel in this basis is sparse.
引用
收藏
页码:3491 / 3502
页数:12
相关论文
共 8 条
[1]   Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases [J].
Averbuch, A ;
Braverman, E ;
Coifman, R ;
Israeli, M ;
Sidi, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 9 (01) :19-53
[2]  
AVERBUCH A, 1993, J MATH IMAGING VIS, V3, P7
[3]  
Bradie B., 1993, Applied and Computational Harmonic Analysis, V1, P94, DOI 10.1006/acha.1993.1007
[4]  
COIFMAN R, 1991, CR HEBD ACAD SCI, V1, P259
[5]   Optimized local trigonometric bases [J].
Matviyenko, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (04) :301-323
[6]  
Rokhlin V., 1993, Applied and Computational Harmonic Analysis, V1, P82, DOI 10.1006/acha.1993.1006
[7]  
STOKES GG, 1856, CAMB PHILOS T, V9, P166
[8]  
WATSON GN, 1918, P CAMB PHILOS SOC, V19, P49