Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis

被引:149
作者
Ozawa, Tsuyoshi [1 ,2 ]
Ishihara, Soichiro [1 ,3 ,4 ]
Fujishiro, Mitsuhiro [5 ]
Saito, Hiroaki [6 ]
Kumagai, Youichi [7 ]
Shichijo, Satoki [8 ]
Aoyama, Kazuharu [9 ]
Tada, Tomohiro [1 ,4 ,9 ]
机构
[1] Tada Tomohiro Inst Gastroenterol & Proctol, Saitama, Japan
[2] Teikyo Univ, Dept Surg, Sch Med, Tokyo, Japan
[3] Int Univ Hlth & Welf, Sanno Hosp, Dept Surg, Tokyo, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Surg Oncol, Tokyo, Japan
[5] Univ Tokyo, Grad Sch Med, Dept Gastroenterol, Tokyo, Japan
[6] Sendai Kousei Hosp, Dept Gastroenterol, Sendai, Miyagi, Japan
[7] Saitama Med Univ, Saitama Med Ctr, Dept Digest Tract & Gen Surg, Saitama, Japan
[8] Osaka Int Canc Inst, Dept Gastrointestinal Oncol, Osaka, Japan
[9] Al Med Serv Inc, Tokyo, Japan
基金
日本学术振兴会;
关键词
CONVOLUTIONAL NEURAL-NETWORKS; INFLAMMATORY-BOWEL-DISEASE; DEEP; INCREASE;
D O I
10.1016/j.gie.2018.10.020
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims: Evaluation of endoscopic disease activity for patients with ulcerative colitis (UC) is important when determining the treatment of choice. However, endoscopists require a certain period of training to evaluate the activity of inflammation properly, and interobserver variability exists. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance using a large dataset of endoscopic images from patients with UC. Methods: A CNN-based CAD system was constructed based on GoogLeNet architecture. The CNN was trained using 26,304 colonoscopy images from a cumulative total of 841 patients with UC, which were tagged with anatomic locations and Mayo endoscopic scores. The performance of the CNN in identifying normal mucosa (Mayo 0) and mucosal healing state (Mayo 0-1) was evaluated in an independent test set of 3981 images from 114 patients with UC, by calculating the areas under the receiver operating characteristic curves (AUROCs). In addition, AUROCs in the right side of the colon, left side of the colon, and rectum were evaluated. Results: The CNN-based CAD system showed a high level of performance with AUROCs of 0.86 and 0.98 to identify Mayo 0 and 0-1, respectively. The performance of the CNN was better for the rectum than for the right side and left side of the colon when identifying Mayo 0 (AUROC = 0.92, 0.83, and 0.83, respectively). Conclusions: The performance of the CNN-based CAD system was robust when used to identify endoscopic inflammation severity in patients with UC, highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver variability.
引用
收藏
页码:416 / +
页数:7
相关论文
共 24 条
[1]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[2]   Big Data and machine learning in radiation oncology: State of the art and future prospects [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Burgun, Anita .
CANCER LETTERS, 2016, 382 (01) :110-117
[3]   Feasibility of Endoscopic Assessment and Treating to Target to Achieve Mucosal Healing in Ulcerative Colitis [J].
Bouguen, Guillaume ;
Levesque, Barrett G. ;
Pola, Suresh ;
Evans, Elisabeth ;
Sandborn, William J. .
INFLAMMATORY BOWEL DISEASES, 2014, 20 (02) :231-239
[4]   Limited uptake of ulcerative colitis "treat-to-target" recommendations in real-world practice [J].
Bryant, Robert V. ;
Costello, Samuel P. ;
Schoeman, Scott ;
Sathananthan, Dharshan ;
Knight, Emma ;
Lau, Su-Yin ;
Schoeman, Mark N. ;
Mountifield, Reme ;
Tee, Derrick ;
Travis, Simon P. L. ;
Andrews, Jane M. .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2018, 33 (03) :599-607
[5]   A review of activity indices and efficacy end points for clinical trials of medical therapy in adults with ulcerative colitis [J].
D'Haens, Geert ;
Sandborn, William J. ;
Feagan, Brian G. ;
Geboes, Karel ;
Hanauer, Stephen B. ;
Irvine, E. Jan ;
Lemann, Marc ;
Marteau, Philippe ;
Rutgeerts, Paul ;
Scholmerich, Jurgen ;
Sutherland, Lloyd R. .
GASTROENTEROLOGY, 2007, 132 (02) :763-786
[6]   Training Programs on Endoscopic Scoring Systems for Inflammatory Bowel Disease Lead to a Significant Increase in Interobserver Agreement Among Community Gastroenterologists [J].
Daperno, Marco ;
Comberlato, Michele ;
Bossa, Fabrizio ;
Armuzzi, Alessandro ;
Biancone, Livia ;
Bonanomi, Andrea G. ;
Cosintino, Rocco ;
Lombardi, Giovanni ;
Mangiarotti, Roberto ;
Papa, Alfredo ;
Pica, Roberta ;
Grassano, Luca ;
Pagana, Guido ;
D'Inca, Renata ;
Orlando, Ambrogio ;
Rizzello, Fernando .
JOURNAL OF CROHNS & COLITIS, 2017, 11 (05) :556-561
[7]   Novel Therapies and Treatment Strategies for Patients with Inflammatory Bowel Disease [J].
Marjolijn Duijvestein ;
Robert Battat ;
Niels Vande Casteele ;
Geert R. D’Haens ;
William J. Sandborn ;
Reena Khanna ;
Vipul Jairath ;
Brian G. Feagan .
Current Treatment Options in Gastroenterology, 2018, 16 (1) :129-146
[8]   Ulcerative colitis [J].
Ungaro, Ryan ;
Mehandru, Saurabh ;
Allen, Patrick B. ;
Peyrin-Biroulet, Laurent ;
Colombel, Jean-Frederic .
LANCET, 2017, 389 (10080) :1756-1770
[9]   The Role of Centralized Reading of Endoscopy in a Randomized Controlled Trial of Mesalamine for Ulcerative Colitis [J].
Feagan, Brian G. ;
Sandborn, William J. ;
D'Haens, Geert ;
Pola, Suresh ;
McDonald, John W. D. ;
Rutgeerts, Paul ;
Munkholm, Pia ;
Mittmann, Ulrich ;
King, Debra ;
Wong, Cindy J. ;
Zou, Guangyong ;
Donner, Allan ;
Shackelton, Lisa M. ;
Gilgen, Denise ;
Nelson, Sigrid ;
Vandervoort, Margaret K. ;
Fahmy, Marianne ;
Loftus, Edward V., Jr. ;
Panaccione, Remo ;
Travis, Simon P. ;
Van Assche, Gert A. ;
Vermeire, Severine ;
Levesque, Barrett G. .
GASTROENTEROLOGY, 2013, 145 (01) :149-+
[10]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410