Generic primal-dual solvability in continuous linear semi-infinite programming

被引:6
|
作者
Goberna, M. A. [1 ]
Todorov, M. I. [2 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, E-03080 Alicante, Spain
[2] Univ Americas Puebla, Dept Math & Phys, Cholula, Mexico
关键词
linear programming; linear semi-infinite programming; stability;
D O I
10.1080/02331930701779872
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we consider the space of all the linear semi-infinite programming (LSIP) problems with a given infinite compact Hausdorff index set, a given number of variables and continuous coefficients, endowed with the topology of the uniform convergence. These problems are classified as inconsistent, solvable with bounded optimal set, bounded (i.e. finite valued), but either unsolvable or having an unbounded optimal set, and unbounded (i.e. with infinite optimal value), giving rise to the so-called refined primal partition of the space of problems. The mentioned LSIP problems can be also classified with a similar criterion applied to the corresponding Haar's dual problems, which provides the refined dual partition of the space of problems. We characterize the interior of the elements of the refined primal and dual partitions as well as the interior of the intersections of the elements of both partitions (the so-called refined primal-dual partition). These characterizations allow to prove that most (primal or dual) bounded problems have simultaneously primal and dual non-empty bounded optimal set. Consequently, most bounded continuous LSIP problems are primal and dual solvable.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条
  • [1] Solvability and Primal-dual Partitions of the Space of Continuous Linear Semi-infinite Optimization Problems
    Barragan, Abraham
    Hernandez, Lidia
    Todorov, Maxim
    COMPUTACION Y SISTEMAS, 2018, 22 (02): : 315 - 329
  • [2] Stability of the primal-dual partition in linear semi-infinite programming
    Ochoa, Pablo D.
    Vera de Serio, Virginia N.
    OPTIMIZATION, 2012, 61 (12) : 1449 - 1465
  • [3] PRIMAL-DUAL PARTITIONS IN LINEAR SEMI-INFINITE PROGRAMMING WITH BOUNDED COEFFICIENTS
    Barragan, Abraham B.
    Hernandez, Lidia A.
    Iusem, Alfredo N.
    Todorov, Maxim, I
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (02): : 207 - 223
  • [4] An inexact primal-dual algorithm for semi-infinite programming
    Wei, Bo
    Haskell, William B.
    Zhao, Sixiang
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (03) : 501 - 544
  • [5] An inexact primal-dual algorithm for semi-infinite programming
    Bo Wei
    William B. Haskell
    Sixiang Zhao
    Mathematical Methods of Operations Research, 2020, 91 : 501 - 544
  • [6] NEW PRIMAL-DUAL PARTITION OF THE SPACE OF LINEAR SEMI-INFINITE CONTINUOUS OPTIMIZATION PROBLEMS
    Barragan, Abraham B.
    Hernandez, Lidia A.
    Todorov, Maxim I.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2016, 69 (10): : 1263 - 1274
  • [7] A note on primal-dual stability in infinite linear programming
    Goberna, Miguel A.
    Lopez, Marco A.
    Ridolfi, Andrea B.
    Vera de Serio, Virginia N.
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2247 - 2263
  • [8] A note on primal-dual stability in infinite linear programming
    Miguel A. Goberna
    Marco A. López
    Andrea B. Ridolfi
    Virginia N. Vera de Serio
    Optimization Letters, 2020, 14 : 2247 - 2263
  • [9] A NEW PRIMAL ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 108 - 122
  • [10] Primal-dual methods for linear programming
    Univ. Californa San Diego, dep. mathematics, La Jolla CA 92093, United States
    Mathematical Programming, Series B, 1995, 70 (03): : 251 - 277