Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol

被引:162
作者
Zhang, Xue [1 ,2 ]
Liu, Jin-Xun [1 ]
Zijlstra, Bart [1 ]
Filot, Ivo A. W. [1 ,3 ]
Zhou, Zhiyou [2 ]
Sun, Shigang [2 ]
Hensen, Emiel J. M. [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Chem & Chem Engn, Inorgan Mat Chem, NL-5600 MB Eindhoven, Netherlands
[2] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Netherlands Ctr Multiscale Catalyt Energy Convers, Univ Weg 99, NL-3585 CG Utrecht, Netherlands
关键词
CO2; reduction; Copper; Structure sensitivity; Size effect; DFT calculations; EVANS-POLANYI RELATION; TRANSITION-METAL SURFACES; SINGLE-CRYSTAL ELECTRODES; FISCHER-TROPSCH REACTION; GAS SHIFT REACTION; ELECTROCHEMICAL REDUCTION; HETEROGENEOUS CATALYSIS; CARBON-DIOXIDE; PARTICLE-SIZE; ELECTROCATALYTIC REDUCTION;
D O I
10.1016/j.nanoen.2017.11.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the mechanism of CO2 hydrogenation to methanol is important in the context of renewable energy storage from societal and technological point of view. We use density functional theory calculations to study systematically the effect of the size of Cu clusters on the binding strengths of reactants and reaction intermediates as well as the activation barriers for the elementary reaction steps underlying CO2 hydrogenation. All the elementary reaction barriers exhibit linear scaling relationships with CO and O adsorption energies. Used in microkinetics simulations, we predict that medium-sized Cu-19 clusters exhibit the highest CO2 hydrogenation activity which can be ascribed to a moderate CO2 coverage and a low CO2 dissociation barrier. The nanoscale effect is evident from the strong variation of CO and O adsorption energies for clusters with 55 or less Cu atoms. The reactivity of larger clusters and nanoparticles is predicted to depend on surface atoms with low coordination number. Optimum activity is correlated with the bond strength of reaction intermediates determined by the dband center location of the Cu clusters and the extended surfaces. The presented size-activity relations provide useful insight for the design of better Cu catalysts with maximum mass-specific reactivity for CO2 hydrogenation performance.
引用
收藏
页码:200 / 209
页数:10
相关论文
共 95 条
[1]   SELECTIVE CONVERSION OF CO2 TO METHANOL BY CATALYTIC-HYDROGENATION OVER PROMOTED COPPER CATALYST [J].
ARAKAWA, H ;
DUBOIS, JL ;
SAYAMA, K .
ENERGY CONVERSION AND MANAGEMENT, 1992, 33 (5-8) :521-528
[2]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[3]   A KINETIC-MODEL OF METHANOL SYNTHESIS [J].
ASKGAARD, TS ;
NORSKOV, JK ;
OVESEN, CV ;
STOLTZE, P .
JOURNAL OF CATALYSIS, 1995, 156 (02) :229-242
[4]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[5]   Steam reforming and graphite formation on Ni catalysts [J].
Bengaard, HS ;
Norskov, JK ;
Sehested, J ;
Clausen, BS ;
Nielsen, LP ;
Molenbroek, AM ;
Rostrup-Nielsen, JR .
JOURNAL OF CATALYSIS, 2002, 209 (02) :365-384
[6]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[7]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[8]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[9]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[10]   Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ACS CATALYSIS, 2017, 7 (10) :7346-7351