Heterogeneous integration of single-crystalline complex-oxide membranes

被引:270
|
作者
Kum, Hyun S. [1 ]
Lee, Hyungwoo [2 ]
Kim, Sungkyu [1 ]
Lindemann, Shane [2 ]
Kong, Wei [1 ]
Qiao, Kuan [1 ]
Chen, Peng [1 ]
Irwin, Julian [3 ]
Lee, June Hyuk [4 ]
Xie, Saien [5 ,6 ]
Subramanian, Shruti [7 ]
Shim, Jaewoo [1 ]
Bae, Sang-Hoon [1 ]
Choi, Chanyeol [8 ]
Ranno, Luigi [1 ,9 ]
Seo, Seungju [1 ]
Lee, Sangho [1 ,9 ]
Bauer, Jackson [9 ]
Li, Huashan [10 ]
Lee, Kyusang [11 ,12 ]
Robinson, Joshua A. [7 ]
Ross, Caroline A. [9 ]
Schlom, Darrell G. [5 ,6 ]
Rzchowski, Mark S. [3 ]
Eom, Chang-Beom [2 ]
Kim, Jeehwan [1 ,9 ,13 ,14 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[4] Korea Atom Energy Res Inst, Neutron Sci Div, Daejeon, South Korea
[5] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[8] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[9] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[10] Sun Yat Sen Univ, Sino French Inst Nucl Energy & Technol, Beijing, Peoples R China
[11] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA USA
[12] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA USA
[13] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[14] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; FILMS; PIEZOELECTRICITY; INTERFACE;
D O I
10.1038/s41586-020-1939-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).
引用
收藏
页码:75 / +
页数:19
相关论文
共 50 条
  • [41] A quantitative strain analysis of a flexible single-crystalline silicon membrane
    Bong, Jae Hoon
    Kim, Cheolgyu
    Hwang, Wan Sik
    Kim, Taek-Soo
    Cho, Byung Jin
    APPLIED PHYSICS LETTERS, 2017, 110 (03)
  • [42] Waveguide-integrated single-crystalline GaP resonators on diamond
    Thomas, Nicole
    Barbour, Russell J.
    Song, Yuncheng
    Lee, Minjoo Larry
    Fu, Kai-Mei C.
    OPTICS EXPRESS, 2014, 22 (11): : 13555 - 13564
  • [43] Epitaxial growth of winding ZnO nanowires on a single-crystalline substrate
    Kawano, Tetsuo
    Uchiyama, Hiroaki
    Kiguchi, Takanori
    Wada, Satoshi
    Imai, Hiroaki
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2009, 117 (1363) : 255 - 257
  • [44] Facile and Fast Synthesis of Single-Crystalline Fractal Zinc Structures through a Solution Phase Reaction and Their Conversion to Zinc Oxide
    Cho, Seungho
    Kim, Semi
    Kim, Hye-Jin
    Lee, Bo Ram
    Lee, Kun-Hong
    LANGMUIR, 2009, 25 (17) : 10223 - 10229
  • [45] Co-implantation of Er and Yb ions into single-crystalline and nano-crystalline diamond
    Cajzl, Jakub
    Akhetova, Banu
    Nekvindova, Pavla
    Mackova, Anna
    Malinsky, Petr
    Oswald, Jiri
    Remes, Zdenek
    Varga, Marian
    Kromka, Alexander
    SURFACE AND INTERFACE ANALYSIS, 2018, 50 (11) : 1218 - 1223
  • [46] Mass-Production of Single-Crystalline Device Arrays of an Organic Charge-Transfer Complex for its Memory Nature
    Liu, Yaling
    He, Meng
    Meng, Qing
    Tang, Zhiyong
    Li, Liqiang
    Hu, Wenping
    SMALL, 2012, 8 (04) : 557 - 560
  • [47] Synthesis of single-crystalline anatase nanorods and nanoflakes on transparent conducting substrates
    Liu, Bin
    Khare, Ankur
    Aydil, Eray S.
    CHEMICAL COMMUNICATIONS, 2012, 48 (68) : 8565 - 8567
  • [48] Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts
    Kamran, Muhammad Arshad
    Zou, Bingsuo
    Majid, A.
    Alharbi, Thamer
    Saeed, M. A.
    Abdullah, Ali
    Javed, Qurat-ul-ain
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (04) : 4086 - 4093
  • [49] Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
    Kim, Jae Young
    Magesh, Ganesan
    Youn, Duck Hyun
    Jang, Ji-Wook
    Kubota, Jun
    Domen, Kazunari
    Lee, Jae Sung
    SCIENTIFIC REPORTS, 2013, 3
  • [50] Resistive memory based on single-crystalline black phosphorus flake/HfOxstructure
    Yan, Xiaoyuan
    Wang, Xueting
    Xing, Boran
    Yu, Ying
    Yao, Jiadong
    Niu, Xinyue
    Li, Mengge
    Sha, Jian
    Wang, Yewu
    AIP ADVANCES, 2020, 10 (07)