Heterogeneous integration of single-crystalline complex-oxide membranes

被引:270
|
作者
Kum, Hyun S. [1 ]
Lee, Hyungwoo [2 ]
Kim, Sungkyu [1 ]
Lindemann, Shane [2 ]
Kong, Wei [1 ]
Qiao, Kuan [1 ]
Chen, Peng [1 ]
Irwin, Julian [3 ]
Lee, June Hyuk [4 ]
Xie, Saien [5 ,6 ]
Subramanian, Shruti [7 ]
Shim, Jaewoo [1 ]
Bae, Sang-Hoon [1 ]
Choi, Chanyeol [8 ]
Ranno, Luigi [1 ,9 ]
Seo, Seungju [1 ]
Lee, Sangho [1 ,9 ]
Bauer, Jackson [9 ]
Li, Huashan [10 ]
Lee, Kyusang [11 ,12 ]
Robinson, Joshua A. [7 ]
Ross, Caroline A. [9 ]
Schlom, Darrell G. [5 ,6 ]
Rzchowski, Mark S. [3 ]
Eom, Chang-Beom [2 ]
Kim, Jeehwan [1 ,9 ,13 ,14 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[4] Korea Atom Energy Res Inst, Neutron Sci Div, Daejeon, South Korea
[5] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[8] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[9] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[10] Sun Yat Sen Univ, Sino French Inst Nucl Energy & Technol, Beijing, Peoples R China
[11] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA USA
[12] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA USA
[13] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[14] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; FILMS; PIEZOELECTRICITY; INTERFACE;
D O I
10.1038/s41586-020-1939-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).
引用
收藏
页码:75 / +
页数:19
相关论文
共 50 条
  • [21] Flexible but Refractory Single-Crystalline Hyperbolic Metamaterials
    Zhang, Ruyi
    Lin, Ting
    Peng, Shaoqin
    Bi, Jiachang
    Zhang, Shunda
    Su, Guanhua
    Sun, Jie
    Gao, Junhua
    Cao, Hongtao
    Zhang, Qinghua
    Gu, Lin
    Cao, Yanwei
    NANO LETTERS, 2023, 23 (09) : 3879 - 3886
  • [22] Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes
    Peng, Bin
    Peng, Ren-Ci
    Zhang, Yong-Qiang
    Dong, Guohua
    Zhou, Ziyao
    Zhou, Yuqing
    Li, Tao
    Liu, Zhijie
    Luo, Zhenlin
    Wang, Shaohao
    Xia, Yan
    Qiu, Ruibin
    Cheng, Xiaoxing
    Xue, Fei
    Hu, Zhongqiang
    Ren, Wei
    Ye, Zuo-Guang
    Chen, Long-Qing
    Shan, Zhiwei
    Min, Tai
    Liu, Ming
    SCIENCE ADVANCES, 2020, 6 (34):
  • [23] Flexible Multiferroic Heterostructure Based on Freestanding Single-Crystalline BaTiO3 Membranes for Spintronic Devices
    Cheng, Yuxin
    Li, Yaojin
    Dong, Guohua
    Peng, Bin
    Zhou, Ziyao
    Liu, Ming
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (06)
  • [24] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
    Song, Jing-Peng
    Li, Ang
    CHINESE PHYSICS B, 2022, 31 (03)
  • [25] Construction of Cuprous Oxide Electrodes Composed of 2D Single-Crystalline Dendritic Nanosheets
    Jang, Ho Seong
    Kim, Suk Jun
    Choi, Kyoung-Shin
    SMALL, 2010, 6 (19) : 2183 - 2190
  • [26] Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires
    Wei, Z. P.
    Guo, D. L.
    Liu, B.
    Chen, R.
    Wong, L. M.
    Yang, W. F.
    Wang, S. J.
    Sun, H. D.
    Wu, T.
    APPLIED PHYSICS LETTERS, 2010, 96 (03)
  • [27] Epitaxial Ru Nanowire on Single-Crystalline Graphene for Advanced Interconnect Application
    Lu, Zonghuan
    Frey, David M.
    Dhull, Neha
    Wang, Gwo-Ching
    Lu, Toh-Ming
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (08) : 5942 - 5950
  • [28] Single-Crystalline Zinc Oxide Nanowires as Photoanode Material for Dye-Sensitized Solar Cells
    Ho, Shu-Te
    Hsiao, Ching-Lun
    Lin, Hsin-Yu
    Chen, Hsiang-An
    Wang, Chiu-Yen
    Lin, Heh-Nan
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (10) : 6473 - 6478
  • [29] Epitaxial growth of pure Sr3Al2O6 sacrificial layer for high quality freestanding single-crystalline oxide membranes
    Qiu, Ruibin
    Peng, Bin
    Liu, Haixia
    Guo, Yunting
    Tang, Haowen
    Zhou, Ziyao
    Liu, Ming
    THIN SOLID FILMS, 2023, 773
  • [30] Controlled Synthesis of Single-Crystalline ZnO Nanoflakes on Arbitrary Substrates at Ambient Conditions
    Vabbina, Phani Kiran
    Karabiyik, Mustafa
    Al-Amin, Chowdhury
    Pala, Nezih
    Das, Santanu
    Choi, Wonbong
    Saxena, Tanuj
    Shur, Michael
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (02) : 190 - 194