Renewable acrylonitrile production

被引:128
|
作者
Karp, Eric M. [1 ]
Eaton, Todd R. [1 ]
Sanchez i Nogue, Violeta [1 ]
Vorotnikov, Vassili [1 ]
Biddy, Mary J. [1 ]
Tan, Eric C. D. [1 ]
Brandner, David G. [1 ]
Cywar, Robin M. [1 ]
Liu, Rongming [2 ]
Manker, Lorenz P. [1 ]
Michener, William E. [1 ]
Gilhespy, Michelle [3 ]
Skoufa, Zinovia [3 ]
Watson, Michael J. [3 ]
Fruchey, O. Stanley [4 ]
Vardon, Derek R. [1 ]
Gill, Ryan T. [2 ]
Bratis, Adam D. [2 ]
Beckham, Gregg T. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Johnson Matthey Technol Ctr, Billingham TS23 1LB, Cleveland, England
[4] MATRIC, S Charleston, WV 25303 USA
关键词
3-HYDROXYPROPIONIC ACID; ESCHERICHIA-COLI; AMMOXIDATION; GLYCEROL; DEHYDRATION; CONVERSION; CATALYSTS; NITRILES; PATHWAY;
D O I
10.1126/science.aan1059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 50 条
  • [31] Mental and neurological disorders in workers employed in acrylonitrile production
    Tarskikh, M. M.
    Klimatskaya, L. G.
    ZHURNAL NEVROLOGII I PSIKHIATRII IMENI S S KORSAKOVA, 2007, 107 (01): : 56 - 57
  • [32] Renewable Hydrogen for Sustainable Ammonia Production
    Brown, Trevor
    CHEMICAL ENGINEERING PROGRESS, 2019, 115 (08) : 47 - 53
  • [33] BIOLUBRICANTS PRODUCTION FROM RENEWABLE FEEDSTOCKS
    Dodos, George S.
    Karonis, Dimitrios
    Zannikos, Fanourios
    Lois, Evripidis
    FRESENIUS ENVIRONMENTAL BULLETIN, 2014, 23 (11): : 2712 - 2717
  • [34] Materials for Production and Storage of Renewable Energy
    Bisquert, Juan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03): : 270 - 271
  • [35] Renewable energies in the production of electricity in Spain
    Plaza Tabasco, Julio
    ESTUDIOS GEOGRAFICOS, 2007, 68 (262): : 366 - +
  • [36] Microbial paths to renewable hydrogen production
    Hallenbeck, Patrick C.
    BIOFUELS-UK, 2011, 2 (03): : 285 - 302
  • [37] Assessing methods for the production of renewable benzene
    Miller, David
    Armstrong, Katy
    Styring, Peter
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2022, 32 : 184 - 197
  • [38] Production of renewable hydrogen by reformation of biofuels
    Panagiotopoulou, Paraskevi
    Papadopoulou, Christina
    Matralis, Haris
    Verykios, Xenophon
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2014, 3 (03) : 231 - 253
  • [39] Renewable energy production in Spain: A review
    Montoya, Francisco G.
    Aguilera, Maria J.
    Manzano-Agugliaro, Francisco
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 : 509 - 531
  • [40] Renewable hydrogen utilisation for the production of methanol
    Cifre, P. Galindo
    Badr, O.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (02) : 519 - 527