Renewable acrylonitrile production

被引:128
|
作者
Karp, Eric M. [1 ]
Eaton, Todd R. [1 ]
Sanchez i Nogue, Violeta [1 ]
Vorotnikov, Vassili [1 ]
Biddy, Mary J. [1 ]
Tan, Eric C. D. [1 ]
Brandner, David G. [1 ]
Cywar, Robin M. [1 ]
Liu, Rongming [2 ]
Manker, Lorenz P. [1 ]
Michener, William E. [1 ]
Gilhespy, Michelle [3 ]
Skoufa, Zinovia [3 ]
Watson, Michael J. [3 ]
Fruchey, O. Stanley [4 ]
Vardon, Derek R. [1 ]
Gill, Ryan T. [2 ]
Bratis, Adam D. [2 ]
Beckham, Gregg T. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Johnson Matthey Technol Ctr, Billingham TS23 1LB, Cleveland, England
[4] MATRIC, S Charleston, WV 25303 USA
关键词
3-HYDROXYPROPIONIC ACID; ESCHERICHIA-COLI; AMMOXIDATION; GLYCEROL; DEHYDRATION; CONVERSION; CATALYSTS; NITRILES; PATHWAY;
D O I
10.1126/science.aan1059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 50 条
  • [21] Poly(acrylonitrile) grafted Ipomoea seed-gums:: A renewable reservoir to industrial gums
    Singh, V
    Tiwari, A
    Tripathi, DN
    Sainghi, R
    BIOMACROMOLECULES, 2005, 6 (01) : 453 - 456
  • [23] STUDY OF THE ECO-EFFICIENCY OF ACRYLONITRILE PRODUCTION PROCESSES
    Bastiao, Danyelle Soares
    Caxiano, Igor Nardi
    Prata, Diego Martinez
    SISTEMAS & GESTAO, 2019, 14 (01): : 39 - 49
  • [24] Environmental Feasibility Analysis for the Acrylonitrile Production from Glycerol
    Musse Neto, Guilherme Joao
    Braga, Eduardo Ramos
    Pontes, Luiz Antonio Magalhaes
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (01) : 184 - 191
  • [25] Treatment of acrylonitrile production effluent by an advanced oxidation process
    Zhang Jie
    Ni Ming
    Ran Xianqiang
    Xue Binjie
    Liu Xianghu
    Fan Jianwei
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2011, 15 (01): : 92 - 96
  • [26] Mortality and morbidity of workers exposed to acrylonitrile in fiber production
    Wood, SM
    Buffler, PA
    Burau, K
    Krivanek, N
    SCANDINAVIAN JOURNAL OF WORK ENVIRONMENT & HEALTH, 1998, 24 : 54 - 62
  • [27] Technical and economic analysis of acrylonitrile production from polypropylene
    Rezaie, Fatemeh
    Pirouzfar, Vahid
    Alihosseini, Afshar
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 16
  • [28] Acrylonitrile production from biomass-derived intermediates
    Beckham, Gregg
    Biddy, Mary
    Brandner, David
    Bratis, Adam
    Dorgan, John
    Eaton, Todd
    Karp, Eric
    Manker, Lorenz
    Michener, William
    Salvachua, Davinia
    Sanchez i Nogue, Violeta
    Tan, Eric
    Vardon, Derek
    Wang, Xiaoqing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] POLAROGRAPHIC DETERMINATION OF ACRYLONITRILE IN PRODUCTION SOLUTIONS (EXCHANGE OF EXPERIENCE)
    SEVASTYA.IG
    TOMILOV, AP
    YAMALEEV, IY
    INDUSTRIAL LABORATORY, 1966, 32 (10): : 1481 - &
  • [30] Risk assessment and risk reduction of an acrylonitrile production plant
    Sano, Kazuhiko
    Koshiba, Yusuke
    Ohtani, Hideo
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2020, 63