Renewable acrylonitrile production

被引:129
作者
Karp, Eric M. [1 ]
Eaton, Todd R. [1 ]
Sanchez i Nogue, Violeta [1 ]
Vorotnikov, Vassili [1 ]
Biddy, Mary J. [1 ]
Tan, Eric C. D. [1 ]
Brandner, David G. [1 ]
Cywar, Robin M. [1 ]
Liu, Rongming [2 ]
Manker, Lorenz P. [1 ]
Michener, William E. [1 ]
Gilhespy, Michelle [3 ]
Skoufa, Zinovia [3 ]
Watson, Michael J. [3 ]
Fruchey, O. Stanley [4 ]
Vardon, Derek R. [1 ]
Gill, Ryan T. [2 ]
Bratis, Adam D. [2 ]
Beckham, Gregg T. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Johnson Matthey Technol Ctr, Billingham TS23 1LB, Cleveland, England
[4] MATRIC, S Charleston, WV 25303 USA
关键词
3-HYDROXYPROPIONIC ACID; ESCHERICHIA-COLI; AMMOXIDATION; GLYCEROL; DEHYDRATION; CONVERSION; CATALYSTS; NITRILES; PATHWAY;
D O I
10.1126/science.aan1059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 37 条
[1]  
[Anonymous], REACTIVE DISTILLATIO
[2]  
[Anonymous], 1996, SOH ACR PROC
[3]  
[Anonymous], 2016, Chemicals from Biomass:A Market Assessment of Bioproducts with Near-Term Potential, DOI DOI 10.2172/124431
[4]   The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass [J].
Biddy, Mary J. ;
Davis, Ryan ;
Humbird, David ;
Tao, Ling ;
Dowe, Nancy ;
Guarnieri, Michael T. ;
Linger, Jeffrey G. ;
Karp, Eric M. ;
Salvachua, Davinia ;
Vardon, Derek R. ;
Beckham, Gregg T. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (06) :3196-3211
[5]   Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine [J].
Borodina, Irina ;
Kildegaard, Kanchana R. ;
Jensen, Niels B. ;
Blicher, Thomas H. ;
Maury, Jerome ;
Sherstyk, Svetlana ;
Schneider, Konstantin ;
Lamosa, Pedro ;
Herrgard, Markus J. ;
Rosenstand, Inger ;
Oberg, Fredrik ;
Forster, Jochen ;
Nielsen, Jens .
METABOLIC ENGINEERING, 2015, 27 :57-64
[6]   V-Sb-oxide catalysts for the ammoxidation of propane [J].
Centi, G ;
Perathoner, S ;
Trifiro, F .
APPLIED CATALYSIS A-GENERAL, 1997, 157 (1-2) :143-172
[7]  
Chauvel A., 1989, Petrochemical Processes
[8]   Overall control strategy of a coupled reactor/columns process for the production of ethyl acrylate [J].
Chien, I-Lung ;
Chen, Kay ;
Kuo, Chien-Lin .
JOURNAL OF PROCESS CONTROL, 2008, 18 (3-4) :215-231
[9]   Biorefineries for the production of top building block chemicals and their derivatives [J].
Choi, Sol ;
Song, Chan Woo ;
Shin, Jae Ho ;
Lee, Sang Yup .
METABOLIC ENGINEERING, 2015, 28 :223-239
[10]   Metabolic Engineering of 3-Hydroxypropionic Acid Biosynthesis in Escherichia coli [J].
Chu, Hun Su ;
Kim, Young Soo ;
Lee, Chan Mu ;
Lee, Ju Hee ;
Jung, Won Seok ;
Ahn, Jin-Ho ;
Song, Seung Hoon ;
Choi, In Suk ;
Cho, Kwang Myung .
BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (02) :356-364