Renewable acrylonitrile production

被引:128
|
作者
Karp, Eric M. [1 ]
Eaton, Todd R. [1 ]
Sanchez i Nogue, Violeta [1 ]
Vorotnikov, Vassili [1 ]
Biddy, Mary J. [1 ]
Tan, Eric C. D. [1 ]
Brandner, David G. [1 ]
Cywar, Robin M. [1 ]
Liu, Rongming [2 ]
Manker, Lorenz P. [1 ]
Michener, William E. [1 ]
Gilhespy, Michelle [3 ]
Skoufa, Zinovia [3 ]
Watson, Michael J. [3 ]
Fruchey, O. Stanley [4 ]
Vardon, Derek R. [1 ]
Gill, Ryan T. [2 ]
Bratis, Adam D. [2 ]
Beckham, Gregg T. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Johnson Matthey Technol Ctr, Billingham TS23 1LB, Cleveland, England
[4] MATRIC, S Charleston, WV 25303 USA
关键词
3-HYDROXYPROPIONIC ACID; ESCHERICHIA-COLI; AMMOXIDATION; GLYCEROL; DEHYDRATION; CONVERSION; CATALYSTS; NITRILES; PATHWAY;
D O I
10.1126/science.aan1059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 50 条
  • [1] Research progress of acrylonitrile production from renewable biomass
    Zhou, Xiaofeng
    Wu, Lianghua
    Jiang, Jiale
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (04): : 1815 - 1822
  • [2] Synthesis of Acrylonitrile from Renewable Lactic Acid
    Mack, Daniel
    Schaetzle, Sabrina
    Traa, Yvonne
    Klemm, Elias
    CHEMSUSCHEM, 2019, 12 (08) : 1653 - 1663
  • [3] Renewable acrylonitrile enabled via catalytic nitrilation chemistry
    Karp, Eric
    Eaton, Todd
    Sanchez i Nogue, Violeta
    Vorotnikov, Vassili
    Manker, Lorenz
    Brandner, David
    Michener, William
    Beckham, Gregg
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [4] RECYCLING TECHNOLOGY IN ACRYLONITRILE PRODUCTION
    JACOB, A
    CHEMICAL ENGINEER-LONDON, 1991, (489): : 14 - 14
  • [5] The new process for acrylonitrile production
    Ihara, T
    Kayou, A
    Kameo, H
    Nakamura, H
    Guo, CJ
    SCIENCE AND TECHNOLOGY IN CATALYSIS 1998, 1999, 121 : 347 - 350
  • [6] Advances in the catalytic production of acrylonitrile
    Zhang, Jianghao
    Hu, Wenda
    Li, Yixiao
    Savoy, Anthony
    Sun, Junming
    Chi, Thomas Y.
    Wang, Yong
    CHEM CATALYSIS, 2024, 4 (01):
  • [7] Propane process boost to acrylonitrile production
    不详
    EUROPEAN CHEMICAL NEWS, 1996, 66 (1733): : 46 - 46
  • [8] New quenching process for acrylonitrile production
    Zhang, Hui
    Gan, Yong-Sheng
    Fang, Yong-Cheng
    1600, Beijing Research Institute of Chemical Industry (32):
  • [9] BP acrylonitrile expansion begins production
    不详
    CHEMICAL & ENGINEERING NEWS, 1997, 75 (08) : 15 - 15
  • [10] Renewable hydrogen production
    Turner, John
    Sverdrup, George
    Mann, Margaret K.
    Maness, Pin-Ching
    Kroposki, Ben
    Ghirardi, Maria
    Evans, Robert J.
    Blake, Dan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (05) : 379 - 407