Co-Registration of Interleaved MEG and ULF MRI Using a 7 Channel Low-Tc SQUID System

被引:44
作者
Magnelind, Per E. [1 ]
Gomez, John J. [1 ]
Matlashov, Andrei N. [1 ]
Owens, Tuba [1 ]
Sandin, J. Henrik [1 ]
Volegov, Petr L. [1 ]
Espy, Michelle A. [1 ]
机构
[1] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA
关键词
Magnetic resonance imaging; magnetoencephalography; microtesla; ULTRA-LOW-FIELD; MICROTESLA MRI; MAGNETIC-RESONANCE; HUMAN BRAIN;
D O I
10.1109/TASC.2010.2088353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we report the first co-registered, interleaved measurements of ultra-low field (ULF) magnetic resonance imaging (MRI) and magnetoencephalography (MEG). Interleaved measurements are interesting for the ultimate aim of combining MEG and functional MRI at ULF. The measurement system consisted of 7 channels with second-order gradiometers coupled to low transition-temperature superconducting quantum interference devices (SQUIDs). The ULF MRI was acquired at a measurement field of 94 after a pre-polarization in a 30 mT field. Our results show that the two modalities can be performed with interleaved measurements. However, due to transients from the walls of the magnetically shielded room a waiting time of more than 3 s had to be introduced between the MRI protocol and the auditory stimulus for the MEG.
引用
收藏
页码:456 / 460
页数:5
相关论文
共 16 条
[1]   On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance [J].
Burghoff, Martin ;
Albrecht, Hans-Helge ;
Hartwig, Stefan ;
Hilschenz, Ingo ;
Koerber, Rainer ;
Hoefner, Nora ;
Scheer, Hans-Juergen ;
Voigt, Jens ;
Trahms, Lutz ;
Curio, Gabriel .
APPLIED PHYSICS LETTERS, 2010, 96 (23)
[2]  
Burghoff M, 2009, METROL MEAS SYST, V16, P371
[3]   SQUID-detected magnetic resonance imaging in microtesla fields [J].
Clarke, John ;
Hatridge, Michael ;
Moessle, Michael .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 :389-413
[4]   Ultra-low-field MRI for the detection of liquid explosives [J].
Espy, M. ;
Flynn, M. ;
Gomez, J. ;
Hanson, C. ;
Kraus, R. ;
Magnelind, P. ;
Maskaly, K. ;
Matlashov, A. ;
Newman, S. ;
Owens, T. ;
Peters, M. ;
Sandin, H. ;
Savukov, I. ;
Schultz, L. ;
Urbaitis, A. ;
Volegov, P. ;
Zotev, V. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (03)
[5]   MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN [J].
HAMALAINEN, M ;
HARI, R ;
ILMONIEMI, RJ ;
KNUUTILA, J ;
LOUNASMAA, OV .
REVIEWS OF MODERN PHYSICS, 1993, 65 (02) :413-497
[6]  
Hironaga N., 2002, P 13 INT C BIOM, P931
[7]   Toward direct neural current imaging by resonant mechanisms at ultra-low field [J].
Kraus, R. H., Jr. ;
Volegov, P. ;
Matlachov, A. ;
Espy, M. .
NEUROIMAGE, 2008, 39 (01) :310-317
[8]   SQUID-detected MRI at 132 μT with T1-weighted contrast established at 10 μT-300 mT [J].
Lee, SK ;
Mössle, M ;
Myers, W ;
Kelso, N ;
Trabesinger, AH ;
Pines, A ;
Clarke, J .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (01) :9-14
[9]   Microtesla MRI with a superconducting quantum interference device [J].
McDermott, R ;
Lee, SK ;
ten Haken, B ;
Trabesinger, AH ;
Pines, A ;
Clarke, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7857-7861
[10]   SQUID-detected microtesla MRI in the presence of metal [J].
Mössle, M ;
Han, SI ;
Myers, WR ;
Lee, SK ;
Kelso, N ;
Hatridge, M ;
Pines, A ;
Clarke, J .
JOURNAL OF MAGNETIC RESONANCE, 2006, 179 (01) :146-151