PHASE SEGREGATION FOR BINARY MIXTURES OF BOSE-EINSTEIN CONDENSATES

被引:10
作者
Goldman, M. [1 ]
Merlet, B. [2 ]
机构
[1] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 8524, Lab P Painleve, F-59655 Villeneuve Dascq, France
关键词
Bose-Einstein condensates; segregation; weighed isoperimetric inequalities; ISOPERIMETRIC PROBLEM; INTERFACE PROBLEM; GRADIENT THEORY; BOUNDARY; TRANSITIONS; MINIMIZERS; STABILITY; EXISTENCE; CONVEX;
D O I
10.1137/15M1051105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the strong segregation limit for mixtures of Bose-Einstein condensates modeled by a Gross-Pitaevskii functional. Our first main result is that in the presence of a trapping potential, for different intracomponent strengths, the Thomas-Fermi limit is sufficient to determine the shape of the minimizers. Our second main result is that for asymptotically equal intracomponent strengths, one needs to go to the next order. The relevant limit is a weighted isoperimetric problem. We then study the minimizers of this limit problem, proving radial symmetry or symmetry breaking for different values of the parameters. We finally show that in the absence of a confining potential, even for nonequal intracomponent strengths, one needs to study a related isoperimetric problem to gain information about the shape of the minimizers.
引用
收藏
页码:1947 / 1981
页数:35
相关论文
共 43 条
[1]   Minimality via Second Variation for a Nonlocal Isoperimetric Problem [J].
Acerbi, E. ;
Fusco, N. ;
Morini, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) :515-557
[2]  
Aftalion A., 2006, PROGR NONLINEAR DIFF, V67
[3]  
AFTALION A., COMMUN CONT IN PRESS
[4]   Thomas-Fermi Approximation for Coexisting Two Component Bose-Einstein Condensates and Nonexistence of Vortices for Small Rotation [J].
Aftalion, Amandine ;
Noris, Benedetta ;
Sourdis, Christos .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) :509-579
[5]  
Aftalion A, 2015, CALC VAR PARTIAL DIF, V52, P165, DOI 10.1007/s00526-014-0708-y
[6]   Domain Walls in the Coupled Gross-Pitaevskii Equations [J].
Alama, Stan ;
Bronsard, Lia ;
Contreras, Andres ;
Pelinovsky, Dmitry E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :579-610
[7]   On the connection problem for potentials with several global minima [J].
Alikakos, N. D. ;
Fusco, G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) :1871-1906
[8]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[9]  
[Anonymous], 2000, Oxford Mathematical Monographs
[10]  
[Anonymous], 1998, Lecture Notes in Math.