Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes

被引:172
|
作者
Zhang, Fenghua [1 ]
Yang, Heqing [1 ]
Xie, Xiaoli [1 ]
Li, Li [1 ]
Zhang, Lihui [1 ]
Yu, Jie [1 ]
Zhao, Hua [1 ]
Liu, Bin [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Macromol Sci Shaanxi Prov, Sch Chem & Mat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
alpha-Fe2O3; Hollow sea urchin-like nanostructure; Nanocubes; Gas sensors; LITHIUM-ION BATTERY; CHEMICAL-VAPOR-DEPOSITION; TEMPLATE-FREE SYNTHESIS; DENDRITIC MICRO-PINES; MAGNETIC-PROPERTIES; WATER-TREATMENT; OXIDE; IRON; NANORODS; GROWTH;
D O I
10.1016/j.snb.2009.06.049
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hollow sea urchin-like alpha-Fe2O3 nanostructures were successfully synthesized by a hydrothermal approach using FeCl3 and Na2SO4 as raw materials, and subsequent annealing in air at 600 degrees C for 2 h. The hollow sea urchin-like alpha-Fe2O3 nanostructures with the diameters of 2-4.5 mu m consist of well-aligned alpha-Fe2O3 nanorods with an average length of about 1 mu m growing radially from the centers of the nanostructures, have a hollow interior with a diameter of about 2 mu m. alpha-Fe2O3 nanocubes with a diameter of 700-900 nm were directly obtained by a hydrothermal reaction of FeCl3 at 140 degrees C for 12 h. The response S-r (S-r = R-a/R-g) of the hollow sea urchin-like alpha-Fe2O3 nanostructures reached 2.4, 75. 5.9, 14.0 and 7.5 to 56 ppm arnmonia, 32 ppm formaldehyde. 18 ppm triethylamine, 34 ppm acetone, and 42 ppm ethanol, respectively, which was excess twice that of the alpha-Fe2O3 nanocubes and the nanoparticle aggregations. Our results demonstrated that the hollow sea urchin-like alpha-Fe2O3 nanostructures were very promising for gas sensors for the detection of flammable and/or toxic gases with good-sensing characteristics. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 389
页数:9
相关论文
共 50 条
  • [31] Anisotropic growth of α-Fe2O3 nanostructures
    Jesus, J. R.
    Lima, R. J. S.
    Moura, K. O.
    Duque, J. G. S.
    Meneses, C. T.
    CERAMICS INTERNATIONAL, 2018, 44 (04) : 3585 - 3589
  • [32] Facile route to synthesis α-Fe2O3/Pt urchin-like composites and their magnetic and electrocatalytic properties
    Chen, Youcun
    Zhang, Kai
    Min, Yulin
    Zhang, Yuanguang
    Zhang, Rui
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 123 (2-3) : 378 - 384
  • [33] Hydrothermal Synthesis and Photocatalytic Performance of Uniform α-Fe2O3 Nanocubes
    Jiao, Yang
    Liu, Yang
    Yin, Bosi
    Zhang, Siwen
    Qu, Fengyu
    Wu, Xiang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (09) : 7211 - 7214
  • [34] Controlled synthesis α-Fe2O3 nanostructures for efficient photocatalysis
    Wang, Chao
    Huang, Zhixiong
    MATERIALS LETTERS, 2016, 164 : 194 - 197
  • [35] Synthesis and magnetic properties of hollow α-Fe2O3 nanospheres templated by carbon nanospheres
    Sun, Lingna
    Cao, Minhua
    Hu, Changwen
    SOLID STATE SCIENCES, 2010, 12 (12) : 2020 - 2023
  • [36] Synthesis and Characterization of α-Fe2O3 Nanocubes via Hydrothermal Method
    Ding, Ming
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (06) : 1808 - 1810
  • [37] Grain refining effect of calcium dopants on gas-sensing properties of electrospun α-Fe2O3 nanotubes
    Zhao, Changhui
    Bai, Jinglong
    Huang, Baoyu
    Wang, Yaling
    Zhou, Jinyuan
    Xie, Erqing
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 231 : 552 - 560
  • [38] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [39] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [40] Hollow core-shell η-Fe2O3 microspheres with excellent lithium-storage and gas-sensing properties
    Zhong, Junyu
    Cao, Chuanbao
    Liu, Youyong
    Li, Yanan
    Khan, Waheed S.
    CHEMICAL COMMUNICATIONS, 2010, 46 (22) : 3869 - 3871