A solvable Hamiltonian system: Integrability and action-angle variables

被引:8
作者
Karimipour, V [1 ]
机构
[1] SHARIF UNIV TECHNOL,DEPT PHYS,TEHRAN,IRAN
关键词
D O I
10.1063/1.531907
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the dynamical system characterized by the Hamiltonian H = lambda N Sigma(j)(N)p(j) + mu Sigma(j,k)(N)(p(j)p(k))(1/2){cos[nu(q(j)-q(k))]} proposed and studied by Calogero [J. Math. Phys. 36, 9 (1994)] and Calogero and van Diejen [Phys. Lett. A 205, 143 (1995)] is equivalent to a system of noninteracting harmonic oscillators both classically and quantum mechanically. We find the explicit form of the conserved currents that are in involution. We also find the action-angle variables and solve the initial value problem in a very simple form. (C) 1997 American Institute of Physics.
引用
收藏
页码:1577 / 1582
页数:6
相关论文
共 6 条
[1]   AN EXACTLY SOLVABLE HAMILTONIAN SYSTEM - QUANTUM VERSION [J].
CALOGERO, F ;
VANDIEJEN, JF .
PHYSICS LETTERS A, 1995, 205 (2-3) :143-148
[2]  
CALOGERO F, 1995, J MATH PHYS, V36, P9
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[5]  
FADDEEV LD, 1984, HOUCH LECT 1982
[6]  
Korepin V. E., 1997, QUANTUM INVERSE SCAT, V3