BRS cohomology and the Chern character in noncommutative geometry

被引:11
作者
Perrot, D [1 ]
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
关键词
non-commutative geometry; K-theory; cyclic cohomology; gauge theories; anomalies;
D O I
10.1023/A:1007652407155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a general local formula computing the topological anomaly of gauge theories in the framework of noncommutative geometry.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 16 条
[1]   THE TOPOLOGICAL MEANING OF NON-ABELIAN ANOMALIES [J].
ALVAREZGAUME, L ;
GINSPARG, P .
NUCLEAR PHYSICS B, 1984, 243 (03) :449-474
[2]   THE STRUCTURE OF GAUGE AND GRAVITATIONAL ANOMALIES [J].
ALVAREZGAUME, L ;
GINSPARG, P .
ANNALS OF PHYSICS, 1985, 161 (02) :423-490
[3]   DIRAC OPERATORS COUPLED TO VECTOR POTENTIALS [J].
ATIYAH, MF ;
SINGER, IM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (08) :2597-2600
[4]   THE ANALYSIS OF ELLIPTIC FAMILIES .1. METRICS AND CONNECTIONS ON DETERMINANT BUNDLES [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :159-176
[5]   THE ANALYSIS OF ELLIPTIC FAMILIES .2. DIRAC OPERATORS, ETA-INVARIANTS, AND THE HOLONOMY THEOREM [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (01) :103-163
[6]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246
[7]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[8]  
CONNES A, 1986, CR ACAD SCI I-MATH, V303, P913
[9]   TRANSGRESSION AND THE CHERN CHARACTER OF FINITE-DIMENSIONAL K-CYCLES [J].
CONNES, A ;
MOSCOVICI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :103-122
[10]  
CONNES A, 1985, PUBL MATH IHES, V62, P41